Shock Electrochemistry in Porous Media

Martin Z. Bazant

Chemical Engineering & Mathematics, MIT GCEP Chair, Visiting Professor, Stanford (2015-16)

Students: Sven Schlumpberger, Nancy Lu (Vicki Dydek)

Postdocs: Jihyung Han, Peng Bai (Ali Mani, Daosheng Deng, Matt Suss)

Classical Models of Transport in Porous Media: Linear Response

Nonlinear Electrokinetic Phenomena, K(F)

1. Surface charge q(V), "induced charge electro-osmosis"

Review: Bazant & Squires, Current Opinion Colloid Interface Science (2010). Microfluidic applications.

2. Salt concentration c(V), "shock electrochemistry"

Deionization shock wave in a nanochannel Mani & Bazant, Phys. Rev. E (2011)

Shock electrodeposition of copper in AAO nanopores Han, Khoo, Bai & Bazant, Sci. Rep. (2014)

Motivation: Electrodialysis

Over-limiting Current in Bulk Electrolytes

1. Electro-osmotic Instability

- Idea: I. Rubinstein et al. (1988)
- Theory: I. Rubinstein, B. Zaltzman (2000)
- Experiment: S. Rubinstein et al. (2008) G. Yossifon, H.-C. Chang (2008)

Kwak, Pham, Lim, Han, PRL (2013)

2. Current-Induced Membrane Discharge

M. Andersen, H. Bruus, A. Mani, M. Soestbergen, PM Bieshevuel, MZB, Phys. Rev. Lett. (2012)

 $H_2O \leftrightarrow H^+ + OH^- \qquad XH_{surf}^+ \leftrightarrow X_{surf} + H^+$

Over-limiting Current in a Microchannel

 $u_{\rm EO}$

< 5 micron
Surface
Conduction
(electromigration)</pre>

<u>1-500 microns</u> Electro-osmotic Flow (surface convection)

> E. V. Dydek, B. Zaltzman, I. Rubinstein, D. Deng, A. Mani, MZB, Phys Rev Lett (2011) A. Yaroshchuk, E. Zholkovsky, S. Pogodin, V. Baulin, Langmuir (2011)

Over-limiting Current in Porous Media

Mechanisms for Over-limiting Conductance

1. Surface conduction

$$\sigma_{sc} \approx \frac{zeDq_s}{k_BTLh_p}$$

2. Surface convection (electro-osmotic flow)

$$\sigma_{EOF} \approx \frac{(ze)^{6/5} (2h_e)^{4/5} \varepsilon^{1/5} D^{3/5} q_s^{2/5} c_0^{4/5}}{L^{9/5} (\eta k_B T)^{2/5}}$$

First Experimental Evidence

Deng, Han, Dydek, Schlumpberger, Mani, MZB, Langmuir (2013)

Over-limiting Current by Electro-osmotic Flow

Transients at Constant Over-limiting Current: Deionization Shock Waves

 $\tilde{I} = 5$

Theory for porous media, steady over-limiting current in a finite system A. Mani & MZB, Phys Rev E (2011); E. V. Dydek & MZB AIChE J (2013)

micro | nano | micro channel junction

V

Deionization Shocks in Porous Media:

Experimental Proof and Application to Water Purification

Deng, Han, Dydek, Schlumpberger, Mani, MZB, Langmuir (2013)

Shock Electro-deionization of CuSO₄

Multifunctionality of Shock ED

Separations

Ionic: Toxic multivalent ions Molecular: Fluorescein dye Colloidal: nanoparticles

Disinfection

E Coli

Extraction rate: 0.2ul/min; Applied voltage: 1.5V. Inlet (10X)

Green: live cells Red : dead cells Outlet (4X)

First Scalable Shock ED System

- S. Schlumberger, N. Lu, M. Suss, MZB, submitted (2015)
- Up to 99.9% salt removal
- Any electrolyte (NaCl)
- Unexpected result: Enhanced water recovery from electro-osmotic flow

Shock Electrodeposition

anodic aluminum oxide (AAO)

PAH (+

silica glass frit

polycarbonate membrane

Layer-by-layer charged polymer coatings

PSS (-)

Metal electrodeposition in charged porous media

Two Mechanisms for Over-limiting Current

Shock Electrodeposition in Nanochannels

Ji-Hyung Han, Edwin Khoo, Peng Bai, MZB, Scientific Reports (2014)

AAO (-)

Proof of surface conduction: Nanotubes

"passively save" high-rate battery separators

Morphology Control by Surface Conduction

Dendrite Suppression by Shocks

Ji-Hyung Han & MZB, in preparation

Conclusion: Shock Electrochemistry

- Electroneutrality. Double layers are important.
- Exceed diffusion-limited current in porous media
- Applications: separations, batteries, nanotechnology

BACKUP SLIDES

Toward Cross-flow Scalable Shock ED

Multifunctionality of Shock ED

Separations

Ionic: Toxic multivalent ions Molecular: Fluorescein dye Colloidal: nanoparticles

Disinfection

E Coli

Extraction rate: 0.2ul/min; Applied voltage: 1.5V. Inlet (10X)

Green: live cells Red : dead cells Outlet (4X)

Applications

Integrated circuits (IBM)

10-100nm Cu interconnects – supress dendrites

CB-RAM - control dendrites

Battery separators (Saint Gobain)

Alumina powders – suppress dendrites

3D Battery fabrication- control dendrites

Shock Electrodeposition in Random Nanopores

Ji-Hyung Han

Cellulose nitrate (CN) membrane

Intrinsic surface charge is negative

CN(-) Very uniform growth CN(+) No metal penetration

Next: Li-ion battery separators

