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Abstract
Over the last decade, an immense amount of data has become available. From collections
of photos, to genetic data, and to network tra�c statistics, modern technologies and cheap
storage have made it possible to accumulate huge datasets. But how can we e�ectively
use all this data? The ever growing sizes of the datasets make it imperative to design new
algorithms capable of sifting through this data with extreme e�ciency.

A fundamental computational primitive for dealing with massive dataset is the Nearest
Neighbor (NN) problem. In the NN problem, the goal is to preprocess a set of objects, so
that later, given a query object, one can �nd e�ciently the data object most similar to the
query. This problem has a broad set of applications in data processing and analysis. For
instance, it forms the basis of a widely used classi�cation method in machine learning: to
give a label for a new object, �nd the most similar labeled object and copy its label. Other
applications include information retrieval, searching image databases, �nding duplicate �les
and web pages, vector quantization, and many others.

To represent the objects and the similarity measures, one often uses geometric notions.
For example, a black-and-white image may be modeled by a high-dimensional vector, with
one coordinate per pixel, whereas the similarity measure may be the standard Euclidean
distance between the resulting vectors. Many other, more elaborate ways of representing
objects by high-dimensional feature vectors have been studied.

In this thesis, we study the NN problem, as well as other related problems that occur
frequently when dealing with the massive datasets. Our contribution is two-fold: we sig-
ni�cantly improve the algorithms within the classical approaches to NN, as well as propose
new approaches where the classical ones fail. We focus on several key distances and simi-
larity measures, including the Euclidean distance, string edit distance and the Earth-Mover
Distance (a popular method for comparing images). We also give a number of impossibility
results, pointing out the limits of the NN algorithms.

The high-level structure of our thesis is summarized as follows.

New algorithms via the classical approaches. We give a new algorithm for the
approximate NN problem in the d-dimensional Euclidean space. For an approximation
factor c > 1, our algorithm achieves dnρ query time and dn1+ρ space for ρ = 1/c2+o(1).
This greatly improves on the previous algorithms that achieved ρ that was only slightly
smaller than 1/c. The same technique also yields an algorithm with dnO(ρ) query time
and space near-linear in n. Furthermore, our algorithm is near-optimal in the class of
�hashing� algorithms.

Failure of the classical approaches for some hard distances. We give an evidence
that the classical approaches to NN under certain hard distances, such as the string edit
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distance, meet a concrete barrier at a nearly logarithmic approximation. Speci�cally,
we show that for all classical approaches to NN under the edit distance, involving
embeddings into a general class of spaces (such as `1, powers of `2, etc), the resulting
approximation has to be at least near-logarithmic in the strings' length.

A new approach to NN under hard distances. Motivated by the above impossibility
results, we develop a new approach to the NN problem, where the classical approaches
fail. Using this approach, we give a new e�cient NN algorithm for a variant of the edit
distance, the Ulam distance, which achieves a double-logarithmic approximation. This
is an exponential improvement over the lower bound on the approximation achievable
via the previous classical approaches to this problem.

Data structure lower bounds. To complement our algorithms, we prove lower bounds
on NN data structures for the Euclidean distance and for the mysterious but important
case of the `∞ distance. In both cases, our lower bounds are the �rst ones to hold in
the same computational model as the respective upper bounds. Furthermore, for both
problems, our lower bounds are optimal in the considered models.

External applications. Although our main focus is on the NN problem, our techniques
naturally extend to related problems. We give such applications for each of our al-
gorithmic tools. For example, we give an algorithm for computing the edit distance
between two strings of length d in near-linear time. Our algorithm achieves approxi-
mation 2Õ(

√
log d), improving over the previous bound of d1/3+o(1). We note that this

problem has a classical exact algorithm based on dynamic programming, running in
quadratic time.

Thesis Supervisor: Piotr Indyk
Title: Associate Professor
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Chapter 1

Introduction

Modern technologies have made it possible to collect vast amounts of data, such as media
data (images, music, videos), network information data (Internet, network monitoring),
genomic data, medical data (personal biometrics), astronomical data (Sloan digital sky
map, SETI data), etc. Now that we have this data, terabytes and petabytes of it, what do
we do with it?

Broadly speaking, we would like to extract �useful information" from the data. For
example, consider a collection of images (say, from Flickr.com). A basic and useful goal
would be to label the images by what they contain (e.g., `a tiger', `an elephant', `a human',
etc). Without any prior information, this would have been quite a di�cult task. However,
if we had a subset of the database that was labeled already, e.g., by hand, then we could
deduce the label of each new image simply by �nding the most �similar� labeled image and
copying its label.

In order to accomplish this task, we need to solve the following computational problem:
given a collection of objects (such as images), for each unlabeled object q, �nd the labeled
object p that is most similar to q, under some notion of similarity. This problem, often called
the all-pairs-nearest-neighbor problem, admits a straightforward solution: just consider all
possible pairs of labeled and unlabeled objects and check how similar they are. However,
this approach is not feasible for modern datasets: even merely enumerating all pairs from a
collection of, say, billions of images would take too much time!

With the datasets only getting larger and more ubiquitous (e.g., see Table 1.1), it be-
comes imperative to design algorithms capable of processing the data extremely e�ciently.
Ideally, we would like algorithms with runtimes that are at most linear in the size of the
dataset, as opposed to, say, quadratic as above. This goal often requires us to reformulate
the algorithm designer's question from �can we solve a problem in polynomial time?� to
�what can we do in near-linear time?�

Dataset Size Reference
NCBI dataset, genomes over 193 billion bases [NCB]
Flickr, photos over 3 billion photos [Fli]
Facebook, photos over 1 billion photos uploaded per month [Fac]
Akamai, HTTP hits over 4 million per second [Aka]

Table 1.1: Sizes of example datasets.
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What are the basic computational questions that we want to solve on these datasets? A
fundamental primitive that regularly emerges is the nearest neighbor (NN) problem1. The
problem is de�ned as follows: given a collection of n objects, build a data structure which,
given arbitrary query object, reports the dataset object that is most similar to the query.

The motivation for this problem is multifold. First, it represents an �online version� of
the aforementioned all-pairs-nearest-neighbor problem. Speci�cally, one can solve the latter
problem by constructing a NN data structure on the labeled objects, and then running a
NN query for each of the unlabeled objects. In fact, in all scenarios considered in this thesis,
this approach provides the best known algorithm for the all-pairs-nearest-neighbor problem.

More broadly, the NN problem is of major importance in a number application areas,
including data compression, databases and data mining, information retrieval, searching
image datasets, machine learning, pattern recognition, statistics, and data analysis. For
example, the �nearest neighbor rule� is perhaps one of the most basic machine learning
classi�cation rules. In fact, our example from above is precisely an implementation of this
rule. To give another example, suppose that a genome of a new organism is sequenced,
and one wants to �nd genes that are similar to those in the existing databases. This again
corresponds to the NN problem, with the edit distance2 as the measure of (dis)similarity. In
fact, such a service is already provided to the public by the National Center for Biotechnology
Information (NCBI), under the auspices of NIH [NCB].

In order to de�ne the NN problem, we need to specify the representation of the objects
as well as the similarity measures. Typically, the features of each object of interest (such
as an image) are represented as a point in a high-dimensional space Rd and the similarity
is measured using a distance metric. The number of features (i.e., the dimensionality)
ranges anywhere from tens to millions. For example, one can represent a 1000 × 1000
image as a vector in a 1, 000, 000-dimensional space, one dimension per pixel. Then, we can
approximate the dissimilarity between two such objects by the Euclidean distance between
the corresponding points. Many other, more advanced, high-dimensional representations of
images and dissimilarity measures are known; we will cover them in this thesis as well.

1.1 Curse of Dimensionality: Diagnosis and Cure
A particularly natural and well-studied instance of the NN problem is in the Euclidean
space, where the data points live in a d-dimensional space Rd under the Euclidean distance
function, where dimension d may range up to hundreds or even thousands.

A number of classical algorithms are known for the case when d is very low. When d = 1,
i.e., when the points are on a real line, the NN problem becomes the classical predecessor
problem. A basic solution is to sort the points, and then, during a query time, perform a
binary search. This already achieves O(n) space and O(log n) query time.

The d = 2 case is more interesting, leading to one of the most classical structures in
computational geometry, the Voronoi diagram (see, e.g., the book of [dvOS97]). The idea is
to partition the plane into polygonal regions, one per dataset point, each region representing
the locus of points that are closer to the respective dataset point than to any other point
from the dataset (see Fig. 1-1). For a query q, one just needs to determine the region
containing q. This is achieved by performing point location, another basic data structure

1In literature, the problem is also called �post o�ce problem�, �best match �le searching problem�, �index
for similarity search�, �vector quantization encoder�, �the light-bulb problem�, etc.

2See Section 2.1 for a de�nition.
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question, which may be solved by, say, persistent binary search trees. This algorithm also
achieves O(n) space and O(logn) query time.

Figure 1-1: A Voronoi diagram of 14 points. Each Voronoi cell is a polygonal region.

How about higher dimensions d ? The generalization of the above algorithm achieves
O(ndd/2e) space [Cla88] (see also [Mei93]). Such a space bound is impractical on a dataset
of even just a million of points for d ≥ 3.

There are several practical algorithms known for the case when the dimension d is �low�
(say, up to 10 or 20). The �rst such data structure, called kd-trees was introduced in 1975 by
Jon Bentley [Ben75], and remains one of the most popular data structures used for searching
in multidimensional spaces. Since then, many other multidimensional data structures have
been developed, including R-tree, R*-tree, X-tree, SS-tree, SR-tree, VP-tree, metric-trees to
name a few; see [Sam06] for an overview.

However, despite decades of intensive e�ort, the current solutions su�er from either space
or query time that is exponential in d. In fact, for large enough d, in theory or in practice,
they often provide little improvement over a linear time algorithm that compares a query
to each point from the database [WSB98]. This phenomenon is often called �the curse of
dimensionality�.

In recent years, several researchers proposed methods for overcoming the running time
bottleneck by using approximation (e.g., [AMN+98, Kle97, IM98, KOR00, HP01, KL04,
DIIM04, CR04, Pan06, AC06], see also [SDI06, Ind03c]). In that formulation, the algorithm
is allowed to return a point whose distance from the query is at most c times the distance
from the query to its nearest points; c > 1 is called the approximation factor.

The appeal of this approach is that, in many cases, an approximate nearest neighbor is
almost as good as the exact one. In particular, if the distance measure accurately captures
the notion of user quality, then small di�erences in the distance should not matter. Moreover,
an e�cient approximation algorithm can be used to solve the exact nearest neighbor problem,
by enumerating all approximate nearest neighbors and choosing the closest point3. For many
data sets this approach results in very e�cient algorithms (see e.g., [ADI+06]).

In this thesis, we propose new algorithms for the approximate NN problem, under the
Euclidean and other distances. Before continuing with the presentation, we formalize the
de�nitions of the (approximate) NN problem.

3See Section 3.1.1 for more information about exact algorithms.
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1.2 De�nition of the Nearest Neighbor Problem
We now formalize the problems studied in this thesis. The NN problem is an example of an
optimization problem: the goal is to �nd a point which minimizes certain objective function
(in this case, the distance to the query point). In contrast, in this thesis we concentrate on
the decision version of the problem. To simplify the notation, we say that a point p is an
R-near neighbor of a point q if the distance between p and q is at most R (see Figure 1-2).
In this language, an algorithm either returns one of the R-near neighbors, or concludes that
no such point exists, for some �xed parameter R.

p1

p2

q

R

p3

Figure 1-2: An illustration of an R-near neighbor query. The nearest neighbor of the query
point q is the point p1. However, both p1 and p2 are R-near neighbors of q.

Naturally, the nearest and near neighbor problems are related. It is easy to see that
the nearest neighbor problem also solves the R-near neighbor problem � one can simply
check if the returned point is an R-near neighbor of the query point. The reduction in other
direction is somewhat more complicated, and involves creating several instances of the near
neighbor problem, for di�erent values of R. During the query time, the data structures are
queried in the increasing order of R. The process is stopped when a data structure reports
an answer. See [HP01] for a reduction of this type with theoretical guarantees.

In the rest of this thesis we focus on the approximate near neighbor problem. The formal
de�nition of the approximate version of the near neighbor problem is as follows.

De�nition 1.2.1 (Randomized c-approximate R-near neighbor, or (c,R)-NN, or c-NN).
Given a set D of points in a d-dimensional space Rd, and parameters R > 0, δ > 0, construct
a data structure such that, given any query point q, if D contains an R-near neighbor of q,
it reports some cR-near neighbor of q in D with probability at least 1− δ.

For simplicity, we often skip the word �randomized� in the rest of the thesis. In those
situations, we will assume that δ is an absolute constant bounded away from 1 (say, 1/2).
Note that the probability of success can be ampli�ed by building and querying several
instances of the data structure. For example, constructing two independent data structures,
each with δ = 1/2, yields a data structure with probability of failure δ = 1/2 · 1/2 = 1/4.

We also de�ne a related reporting problem.

De�nition 1.2.2 (Randomized R-near neighbor reporting). Given a set D of points in a
d-dimensional space Rd, and parameters R > 0, δ > 0, construct a data structure such that,
given any query point q, each of the R-near neighbors of q in D is reported with probability
at least 1− δ.
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Note that the latter de�nition does not involve an approximation factor. Also, unlike in
the case of the approximate near neighbor, here the data structure can return many (or even
all) points, if a large fraction of the data points are located close to the query point. As a
result, one cannot give an a priori bound on the running time of the algorithm. However, as
we point out later, the two problems are intimately related. In particular, the algorithms in
this thesis can be easily modi�ed to solve both c-NN and the reporting problems. We will
expand on this issue for one of our algorithms in Section 3.1.1.

We consider the c-NN problem under other distances, such as theHamming distance. The
Hamming distance between two binary strings of length d is the number of di�ering positions
between the two strings. It is also essentially equivalent to the Manhattan distance, or `1,
where the distance between two real vectors is the sum of the absolute di�erences between
the coordinates (see Section 2.1 for formal de�nitions).

1.3 Nearest Neighbor Problem: History and Our Contribu-
tions

We now present a history of approaches to the high-dimensional NN problem, highlighting
our contributions. These include both improving the old approaches and proposing new
ones. Our description is composed of several parts.

I. We start by describing the classical approach to NN under the Euclidean and Hamming
distances. These algorithms are based on hashing, and, in particular, on the Locality-
Sensitive Hashing scheme. Our contribution is to give a new Locality-Sensitive Hashing
algorithm for the Euclidean space, which is near-optimal in this class of NN algorithms.

II. We then discuss NN under other, harder distances, such as the standard edit distance
on strings. A classic approach to dealing with NN under such distances is to reduce the
problem to NN under Hamming distance, where e�cient algorithms exist. We show that,
while this approach gets us some mileage, it meets a concrete barrier at a nearly-logarithmic
approximation regime for many such hard distances.

III. This obstacle leads us to the next section, where we suggest a new approach to NN
that overcomes this barrier. We provide a speci�c example of a distance, a variant of edit
distance, for which we obtain an NN algorithm with approximation exponentially better
than what is possible via the aforementioned approaches.

IV. The NN story would be incomplete without the study of NN under the `∞ distance,
which turns out to be the new obstacle in our newly proposed approach. The `∞ distance
between two d-dimensional vectors is the maximum di�erence among the d coordinates, and
it stands alongside with classical distances such as the Hamming (`1) and Euclidean (`2)
distances. Yet, `∞ remains intriguingly di�erent from them: it admits an NN solution,
with an unusual approximation � double-logarithmic in the dimension d. We prove a
data structure lower bound for `∞, which proves that this approximation is optimal in the
algorithm's computational model.
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V. While the main focus of the present thesis is the NN problem, our main algorithmic
techniques naturally extend to other problems as well. For the techniques underlying both of
our approaches (�old� and �new�), we show how they lead to improved algorithms for other
problems, such as the classical problem of estimating the edit distance between two strings,
in near-linear time.

1.3.1 Classical approach: Hashing

The algorithms of [KOR00, IM98] were the �rst to circumvent the curse of dimensionality
for the approximate near neighbor problem. For an approximation of 1 + ε, their data
structures support queries in O(d log n) time (later improved in [AC06]), and use space
which is polynomial in n. These algorithms are essentially full-indexing algorithms: they
prepare an index table for �each possible� query point (after an appropriate non-trivial
discretization of the space), where each cell stores the correct answer. Thus, to answer a
query, these algorithms use only a single look-up in a specially-constructed hashing table.
Unfortunately, the exponent in the space bounds is roughly O(1/ε2) (for ε < 1), where �big-
Oh� constant is �non-negligible�. Even for, say, ε = 1, the space used by the data structure
is large enough so that the algorithm becomes impractical even for relatively small datasets.
Furthermore, as we show in this thesis, the space of nΩ(1/ε2) is essentially tight when the
data structure performs one, or a small number of look-ups4 into the data-structure.

An alternative approach, introduced in [IM98, GIM99], uses much smaller space while
preserving a sub-linear query time. It relies on the concept of locality-sensitive hashing
(LSH). The key idea is to hash the points using several hash functions so as to ensure
that, for each function, the probability of collision is much higher for points which are
close to each other than for those which are far apart. Then, one can determine near
neighbors by hashing the query point and retrieving elements stored in buckets containing
that point. In [IM98, GIM99] the authors provided such locality-sensitive hash functions
for the case when the points live in the Hamming space. The algorithm also extends to the
Euclidean space by using embeddings (see de�nition in Section 1.3.2), however the extension
adds additional complexity to the algorithm. A followup work, [DIIM04] introduced LSH
functions that work directly in Euclidean space and result in a (slightly) faster running
time. The latter algorithm forms the basis of E2LSH package [AI05] for high-dimensional
similarity search, which has been used in many applied scenarios.

The standard LSH-based algorithms have guarantees of the form: nρ query time and n1+ρ

space, where the parameter ρ < 1 depends on the approximation c. For example, [DIIM04]
achieve ρ slightly below 1/c. More recently, [Pan06] proposed a di�erent method of utilizing
locality-sensitive hash functions, which results in near-linear space, at the cost of a somewhat
higher query time.

The natural question raised by this line of research is: what is the smallest exponent
ρ achievable via the locality-sensitive hashing approach? It has been conjectured that one
can achieve ρ ≤ 1/c2 (see, e.g., [Ind02a]). The conjecture was motivated by the fact that an
algorithm with such exponent exists for the closely related problem of �nding the farthest
neighbor [Ind03a].

4More formally, cell probes, which can be viewed as adaptive look-ups. See more on the cell probe model
in Chapter 8.
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Our contributions. We essentially resolve the issue by providing an algorithm with query
time dnρ(c) using space dn1+ρ(c), where ρ becomes arbitrarily close to 1/c2:

lim
n→∞ ρ(c) = 1/c2.

This signi�cantly improves over the earlier running time of [DIIM04]. In particular, for
c = 2, our exponent tends to 0.25, while the exponent in [DIIM04] was around 0.45. More-
over, [MNP06] show that LSH-based algorithms cannot achieve ρ < 0.462/c2. Thus, the
exponent of the running time of our algorithm is essentially optimal, up to a small constant
factor. We also note another recent related lower bound: [PTW08] show that for any data
structure with a constant number of look-ups, the space must be at least n1+Ω(1/c2).

Our result also extends to the regime of NN algorithms with a near-linear space. Speci�-
cally, we show how to combine our algorithm with the techniques from [Pan06] to obtain an
algorithm with Õ(dn) space and dnO(1/c2) query time.5 This improves over [Pan06]'s result,
which achieves dnO(1/c) query time.

Our main NN algorithm immediately implies improved algorithms for several other ap-
proximate problems in high dimensional spaces. For example, it is known [IM98, Ind01c]
that the c-approximate minimum spanning tree (MST) problem for n points in the Euclidean
space can be computed by using O(n log n) calls to the c-approximate near neighbor oracle
for that space. Thus, our result implies a dn1+1/c2+o(1)-time algorithm for the c-approximate
MST problem. Other problems for which similar improvement is obtained include (dynamic)
closest pair and facility location [Ind01c].

We present the state-of-the-art algorithms for the NN problem under the Euclidean
distance in Table 1.2. All algorithms presented there are hashing-based algorithms.

Paper Type Query time Space Comments
[KOR00, IM98] Upper bound O(d log n), 1 look-up nO(1/ε2) c = 1 + ε ≤ 2
This thesis Lower bound O(1) look-ups nΩ(1/ε2)

[IM98, GIM99] Upper bound dnρ n1+ρ ρ = 1/c
[DIIM04] Upper bound dnρ n1+ρ ρ < 1/c
This thesis Upper bound dnρ n1+ρ ρ = 1/c2 + o(1)
[MNP06] Lower bound ρ ≥ 0.45/c2 for LSH-based algorithms
[PTW08] Lower bound O(1) look-ups n1+Ω(1/c2)

[Pan06] Upper bound dnρ n ρ = O(1/c)
This thesis Upper bound dnρ n ρ = O(1/c2)

Table 1.2: Space and time bounds for hashing-based data structures for NN under the
Euclidean distance. All algorithms, except [KOR00], are LSH-based. Factors polynomial in
log n and 1/ε, as well as an additive term of dn in the space bound, are omitted for clarity.

An external application. We also give an application of the LSH-based techniques to
another problem of interest, namely the problem of approximating kernel spaces. A kernel
space is a high-dimensional Euclidean space that is given only implicitly, via its inner prod-
uct. For example, the Gaussian kernel is the (in�nite-dimensional) space of vectors φ(x), for

5Following standard convention, Õ(f(n)) denotes O(f(n) · logO(1) f(n)).
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x ∈ Rd where d ∈ N is �xed, such that K(x, y) = φ(x) ·φ(y) = e−‖x−y‖2 for all x, y ∈ Rd. In
general, the map φ(x) necessarily has to be high-dimensional (or even in�nite-dimensional)
and is thus ine�cient to work with. We show how one can e�ciently approximate such maps
φ using LSH techniques. As shown in [RR07], such approximations may lead to signi�cant
improvements in classi�cation algorithms, and other related kernel algorithms in machine
learning.

1.3.2 Classical approach: Embeddings and sketching
So far we have discussed the Euclidean and Hamming distances only. Not surprisingly,
these are just two out of the many distances for which we desire e�cient NN algorithms.
For example, a natural distance between strings is the classical edit distance, or Levenshtein
distance, which is equal to the number of insertions/deletions/substitutions to transform one
string into the other [Lev65] (see de�nitions and motivation for this and other distances in
Section 2.1). Most of such distances are no easier than the Euclidean or Hamming distance
� in fact, often provably harder � and thus require new NN algorithms.

Methodologically, given a large number of distances, it is desirable to design a common
approach to all (or most) of them at the same time. Indeed, in the last decade, researchers
identi�ed two such approaches: embeddings and sketching.

Below we describe each of these two approaches. In the following description, we focus on
the edit distance as a motivating example of a hard distance. We will elucidate that, while
these approaches give many improved algorithms, they su�er from fundamental limitations
to achieving very e�cient algorithms.

Embeddings
A natural way to deal with the NN problem under a new distance is to reduce it to NN under
a distance for which we have an e�cient algorithm, such NN under Hamming or Euclidean
distances. Embeddings are perhaps the most natural way to achieve this goal.

An embedding is a mapping from one metric space (the �guest� space) to another (the
�host� space), which preserves the distances between every pair of points, up to a multi-
plicative factor called the distortion. For example, an embedding of edit distance into `1 is
a mapping f from the strings into the real space, such that for all strings x, y,

ed(x, y) ≤ ‖f(x)− f(y)‖1 ≤ α · ed(x, y),

where α ≥ 1 is the embedding's distortion (see formal de�nition in Section 2.2), and ed(x, y)
is the edit distance between x and y. An embedding with distortion α gives an e�cient near
neighbor data structure for approximation, say, 2α, by applying the embedding and utilizing
the NN algorithms from [IM98, KOR00].6

The `1 space in particular has proven to be a remarkably convenient host space. This is
because:
• it is rich � many interesting and useful metrics can be embedded into it with good

distortion (see Table 1.3), and

• it is tractable� several computational problems in it, most notably NN, admit e�cient
algorithms.

6One would also require that the embedding f(x) is e�ciently computable. Since this requirement is
often automatically satis�ed, we will mostly ignore this issue.
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Besides the NN application, the embeddings approach was successful in a number of other
applications including approximation algorithms for the sparsest-cut in a graph [LLR95,
AR98, ARV04, ALN05], sketching under edit distance [OR07, CK06] and under Earth-Mover
Distance [Cha02, IT03, NS07, AIK08]. See also the surveys of [Ind01a, Lin02, Mat02, IM03].

Naturally, researchers were keen to �nd the least distortion of embedding into `1 of
various metrics � e.g., the problem of embedding of edit distance is cited in Matou²ek's list
of open problems [Mat07], as well as in Indyk's survey [Ind01a].

Metric Upper bound Lower bound for
`1

Lower bound for
ultra-sketchables

Edit distance on {0, 1}d
2O(
√

log d log log d) Ω(log d) Ω (log d / log log d)
[OR07] [ADG+03, KN06,

KR06, AK07]
This thesis

Ulam distance (edit distance O(log d) Ω (log d / log log d) Ω (log d / log log d)
on non-repetitive strings) [CK06] [Cor03], This thesis This thesis
Block edit distance, O(log d log∗ d) � �
edit distance with moves [CPSV00, MS00,

Cor03, CM07]

EMD over [d]2
O(log d) Ω(

√
log d) �

[Cha02, IT03] [NS07]
EMD over {0, 1}t O(log s log t) Ω(log s) Ω(log s)
(for sets of size s) [AIK08] [KN06] This thesis

Table 1.3: Distortion for embedding of various metrics into `1, as well as lower bounds for
embedding into �ultra-sketchable spaces�, namely spaces admitting constant-sized sketches.
EMD refers to the Earth-Mover Distance. See de�nitions and motivation of the presented
distances in Section 2.1.

However, it was recently discovered that this approach has inherent limitations. In
particular, for the aforementioned problems, embedding into `1 cannot result in algorithms
with constant approximation factors [KV05, KN06, KR06, DKSV06, NS07, AK07, AIK08,
CKN09]. Table 1.3 summarizes known bounds on edit distance, some of its variants, and
variants of the Earth-Mover Distance (EMD).

Hence, a natural question arises: are there other host spaces that are richer, yet tractable?
Prior to this thesis, very little was known. For example, the �next natural� candidate for a
host space is the squared-`2 space, the real space with squared Euclidean distance (see formal
de�nition in Section 2.1). This space has an e�cient NN solution (which follows directly
from NN under the Euclidean distance), and it is provably richer than `1 in general [KV05,
KR06, DKSV06, CKN09]. Yet, even for this space, the only lower bound on embedding edit
distance into it was of 3/2 [ADG+03]. Furthermore, for even more general spaces where
we can still apply LSH-based algorithms, such as higher powers of `2, the bound decays to
essentially 1.

Our contributions. In this thesis, we rule out the possibility of low-distortion embedding
into a large class of host spaces for the edit distance and its important variant, the Ulam
distance. This class of host spaces, termed �ultra-sketchable spaces�, includes `1, any �xed
power of `2, as well as, more generally, all spaces which are amenable to the hashing-based
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techniques described in Section 1.3.1. We describe this class in more detail in the �Sketching�
section below.

In terms of the above discussion, our lower bound implies that both edit distance over
{0, 1}d and the Ulam distance do not embed into any �xed power of `2 with distortion better
than Ω(log d / log log d). We note that in the case of Ulam distance, our result is the �rst
super-constant bound even for embedding into `1, and, in fact, it nearly matches the upper
bound of O(log d) from [CK06]. See also Table 1.3.

At this moment, it is also worth mentioning that one could also consider `∞ space
as another potential candidate for a host space (described in more detail in Section 1.3.4
below). While the `∞ space is actually rich enough to contain edit distance, it is not
tractable: a low-distortion embedding requires very high dimension, roughly exponential in
the strings' length d. This follows from the corresponding lower bound on Hamming distance
(see [JL01, Section 8]), and the fact that edit distance is no easier than Hamming distance
(see, e.g., [BJKK04], for a reduction).

Sketching
Sketching is similar to the embedding approach and can be seen as an embedding into a host
space of a more �computational� �avor. Formally, the sketch of a string x is a (randomized)
mapping of x into a short ��ngerprint� f(x), such that sketches of two strings, f(x) and
f(y), are su�cient to distinguish between the case where edit distance is ed(x, y) ≤ R, and
the case where ed(x, y) > αR, for �xed approximation factor α > 1 and parameter R > 1,
with good probability (say, at least 2/3). The main parameter of a sketching algorithm is
its sketch size, the length of f(x) (measured in bits).7 Of particular interest is the case
of constant-size sketches, as we show next; we refer to the spaces admitting constant-sized
sketches as ultra-sketchable.

Beyond the syntactic similarity to an embedding, ultra-sketchable spaces are in fact
a generalization of the embeddings approach presented above, albeit with an (arbitrarily
small) constant factor loss in the approximation factor. This follows from the following two
facts:

`1 =⇒ ultra-sketchable: Embedding into `1, or even powers of `2, implies a sketch of
small size.
Namely, [KOR00] show a sketching algorithm for the `1 distance achieving 1 + ε ap-
proximation in O(1/ε2) space, for any ε > 0. Hence, any space embeddable into
`1 (or powers of `2)8 also admits a constant-sized sketch, with only a 1 + ε loss in
approximation.

ultra-sketchable =⇒ NN: Existence of small sketches implies e�cient NN algorithms.
In particular, if a space admits a sketch of size s, for some approximation α, then
one immediately obtains an NN algorithm for the same approximation α, with nO(s)

space and query time essentially proportional to the time to compute the sketch.
This algorithm is essentially a full-indexing algorithm, which stores an answer for
all possible sketches of the query point. Other space/query-time trade-o�s are also
possible [AK08a].

7The sketching model is also equivalent to a (randomized) simultaneous communication protocol; see also
Chapter 7.

8For a formal argument in the case of powers of `2, see the argument in Corollary 7.0.7.
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Indeed, the NN data structure under the Hamming distance of [KOR00] can be viewed
as an instantiation of this approach, resulting in an NN data structure with nO(1/ε2) space
and O(d logn) query time.9

The sketching model is also important as a basic computational notion for massive data
sets [FM85, AMS99, BBD+02], and in recent years, an intensive research e�ort has led to
a number of sketching algorithms [Mut03, Mut09]. For instance, sketching can be useful
for quickly estimating the distance (e.g., as a �ltering step to speed up the linear-scan NN
algorithm).

Prior to this thesis, the only sketching lower bounds were known for the `p spaces,
for p ∈ [1,∞] [Woo04, SS02a, BJKS04]. With regards to the edit distance, in 2004,
[BJKK04] wrote that �The state of a�airs indicates that proving sketching lower bounds for
edit distance may be quite hard.�

Our contributions. In this thesis, we prove a sketching lower bound for edit distance
over {0, 1}d and Ulam distance, as well as the Earth-Mover Distance over {0, 1}d. For
edit and Ulam distances, we show that constant-sized sketches cannot achieve an approx-
imation below Ω(log d / log log d). The lower bound implies the aforementioned non-
embeddability results, by the �`1 =⇒ ultra-sketchable� implication from above. In a very
recent manuscript [AJP10], we show how to combine this lower bound with the information
complexity tools of [CSWY01, BJKS04] in order to extend the lower bound to sketches of
nearly-logarithmic size. For Ulam distance, this bound matches the upper bound, up to a
constant in the exponent (see the next section).

We note that our sketching lower bound is also the �rst lower bound of computational
�avor for the edit distances, thus providing rigorous evidence for the perceived hardness
of the edit distance (see also the discussion at the beginning of Chapter 7, as well as in
Section 7.7).

1.3.3 New approach: Iterated product spaces
In the previous section, we have unveiled a barrier for the classical approaches to NN for
some �hard� distances of interest, such as the edit distance and its variant, the Ulam distance.
Namely, we have shown that, for any approach based on reducing edit distance to classical
host spaces � such as `1, Euclidean space, squared-`2, `∞, or constant-size sketches �
we will not be able to go below near-logarithmic approximation factor. Thus, the following
question re-emerges: can we identify new, richer host spaces, which, at the same time, admit
e�cient NN algorithms?

Our contributions. In this thesis we answer positively to this question. We propose an
alternative way to achieve generic NN algorithms, and provide a concrete implementation
for a metric as a proof-of-concept. We mostly focus on the Ulam distance, the edit distance
on non-repetitive strings. For this distance, our approach leads to an e�cient NN algorithm
with approximation that is nearly double-logarithmic in the strings' length, which is an
exponential improvement over what is possible via the previously mentioned approaches,
such as embedding into `1 (see Table 1.3).

9We note that the algorithm presented in [KOR00] is a bit more complicated than that because they
manage to obtain a certain deterministic solution to the NN problem. We will not discuss this version in
the present thesis.
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Our approach is to consider a class of somewhat unusual host spaces, namely the iterated
products of standard spaces like `1 and low-dimensional `∞. We show that these spaces
exhibit a better balance between the desired richness and tractability. Indeed, we identify a
sweet spot: the spaces are rich enough to accommodate the intended guest spaces with only
a constant distortion, while admitting quite e�cient algorithms.

An example of our host spaces is the space
⊕k

(`2)2

⊕l

`∞
`m1

which is a combination of the standard `1, `2, and `∞ norms. The symbol
⊕l

`∞ is an
`∞-product operator that takes the `m1 space and produces a new space,

⊕l
`∞ `

m
1 , with the

following distance. Imagine the two points as two-dimensional matrices, of size l ×m, and
compute the di�erence matrix. On each row, apply the `1 norm, reducing the matrix to
a vector. Then, on the resulting l-dimensional vector, apply the `∞ norm, yielding the⊕l

`∞ `
m
1 distance. Finally, we iterate this operation again, on three-dimensional arrays,

with squared-`2 on the outside, thus obtaining the intended distance. Formally, the space
contains points x ∈ Rk·l·m under the following distance function10

d22,∞,1(x, y) =
k∑

a=1

(
max

b=1,2,...,l

{ m∑

c=1

|xa,b,c − ya,b,c|
})2

,

where xa,b,c stands for coordinate (a− 1)lm+ (b− 1)m+ c of x.
For the Ulam distance speci�cally, we show that we can embed it into the above host

space with only a constant distortion. Furthermore, we show that the above host space
admits an e�cient NN solution with a nearly double-logarithmic approximation.

Besides the Ulam distance, we also consider the Earth-Mover Distance (EMD), which
is a metric of interest for computing similarity between two images (see Section 2.1 for
de�nition and motivation). For EMD, our partial results indicate that this new approach
may be applicable here too. Like for Ulam distance, the embedding of EMD into `1 and
related spaces such as squared-`2 provably requires high distortion.

In fact, we show how to construct an e�cient NN algorithm for any iterated product
space of any `p's, with an approximation polynomial in a double-logarithmic factor. In
particular, we obtain the �rst NN algorithm under the standard `p norm for p ∈ (2,∞); no
algorithms for this norm were known previously.

External applications. Finally, we show that embeddings into products spaces may be
helpful for applications other than NN problem as well.

First, we show how to estimate the (standard) edit distance between two strings in
near-linear time, with a greatly improved approximation factor. While this classic problem
has a textbook dynamic programming solution, the algorithm runs in quadratic time. This
runtime has not been improved since 1980, and even then the improvement was only by a
poly-logarithmic factor [MP80]. Years of research on approximate algorithms yielded several
near-linear time algorithms with approximation of the order dc for di�erent constants c,
where d is the length of the strings (state-of-the-art was c = 1/3 [BES06]). We achieve
approximation factor of 2Õ(

√
log d), which is smaller than dε for any small constant ε > 0.

10We note that, formally, this function does not satisfy the triangle inequality; however, this aspect will
be of little importance here.
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Second, we provide a algorithm for sketching of the Ulam distance. In fact, we design a
streaming algorithm for estimating the Ulam distance between two strings in polylogarithmic
space. Our algorithm also answers an open question of [AJKS02], who consider the same
problem for the Kendall-tau (number of inversions) distance.

We summarize the algorithms obtained using product spaces techniques in Table 1.4.

Problem Reference Approx. Comments
Nearest Neighbora [CK06] O(log d)
under [Ind04] 3α−1 space nO(d1/α)

Ulam distance This thesis Ω
(

log d
log log d

)
for embedding in `1, ultra-sketchables

This thesis O(log log d) dO(1)nε query time
Sketching Ulam [CK06] O(log d) O(1) size sketch
distance This thesis, [AJP10] O(1) Ω(log d / log log d) size
(streamable) This thesis O(1) (log d)O(1) size
Computing edit [BES06] d1/3+o(1) in d1+o(1) time
distance on {0, 1}d This thesis 2Õ(

√
log d) in d1+o(1) time

Nearest Neighbor [Cha02, IT03] O(log d)
under [NS07] Ω(

√
log d) for embedding into `1

EMD over [d]2 [ADIW09] O(α) nd
1/α space, (d log n)O(1) query time

This thesis O(α log log n) 2d
1/α
n1+ε space, dO(1)nε query time

Nearest Neighbor This thesis O(1
ε log log d) O(dn1+ε) space, Õ(dnε

p
) query time

under `p for p > 2

aUnless mentioned otherwise, query time is d logO(1) n and space is (dn)O(1).

Table 1.4: Results based on product spaces techniques for the edit over {0, 1}d, Ulam, and
EMD metrics, as compared with the previous bounds. ε > 0 and α ∈ N are arbitrary.

1.3.4 Odd man out: The `∞ distance
The `∞ distance is another classical norm, next to Hamming (`1) and Euclidean distance
(`2). However `∞ seems to be intriguingly di�erent from these other norms, and remains
much less understood.

In fact, there was precisely one worst-case11 result on NN under the `∞ norm. [Ind98]
achieves an NN algorithm for d-dimensional `∞ with O(log log d) approximation, which
requires space dn1+ε logO(1) n and d · logO(1) n query time, for any �xed ε > 0.

The `∞ space is of interest as a potential host space for some of the �hard� metrics. The
motivation comes from a result of Matou²ek that states that any metric on n points can be
embedded into `∞ of dimension d = O(cn1/c logn) with 2c − 1 distortion [Mat96], for any
c ∈ N. While this general guarantee on the dimension is too high for many applications, it
suggests that `∞ is a very good target space for trying to embed particular metrics more
e�ciently. (See also more motivation for `∞ distance in Chapter 9.)

11Heuristic methods have also been devised. On the theoretical side, [AHL01] analyze a brute-force
algorithm for the uniform input distribution, showing a bound of Θ(nd/ lg n).
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As already mentioned in the previous section, `∞ plays a role in embeddings into (it-
erated) product spaces. For `∞-product, Indyk [Ind02b] has extended his original NN al-
gorithm from `∞ to `∞-product spaces. Using this algorithm for `∞-product spaces, In-
dyk [Ind02b] obtained an NN algorithm for the Frechet metric. Even more pertinent to our
discussion is the fact that `∞ distance plays an important role for iterated product spaces,
and in particular for the Ulam distance.

In fact, the bottleneck in some of the currently best algorithms for Ulam and Frechet
metrics is the `∞ norm. In particular, one obtains the same unusual double-logarithmic
approximation in the polynomial space regime.

Hence the following question emerges: can one improve Indyk's algorithm [Ind98] or
prove it is optimal?

Our contributions. In this thesis, we give an indication that Indyk's unconventional
double-logarithmic approximation bound may in fact be optimal. Speci�cally, we prove a
lower bound for NN under `∞, showing that the space/approximation trade-o� from [Ind98]
is optimal for decision trees and for data structures with constant cell-probe complexity.

1.4 Summary and Organization
We present the detailed exposition of our contributions in two parts. In the �rst part, we
describe the algorithmic results of this thesis, which are summarized as follows:

• We design a new algorithm for NN under the Euclidean space, achieving dnρ query
time and dn1+ρ space/preprocessing for ρ = 1/c2 + o(1). We also give a practical
variant of the algorithm, based on the Leech lattice. Furthermore, we show how to
modify our algorithm to obtain near-linear space and dnO(1/c2) query time. These
results, along with a description of the main technique, Locality-Sensitive Hashing,
appear in Chapter 3.

• We give an application of the Locality-Sensitive Hashing to approximating kernel
spaces. Our results apply to kernel spaces such as the Laplacian, Gaussian, Jaccard,
and Geodesic kernels. This result appears in Chapter 4.

• We present a new approach to NN under �hard� metrics, based on embeddings into
iterated product spaces. We design new NN algorithms for a large class of iterated
product spaces. As a particular application, we show how this approach yields a new
NN algorithm for the Ulam distance, with only a nearly double-logarithmic approxi-
mation. These results appear in Chapter 5.

• We present two applications of product spaces to other problems, which extend beyond
the NN application. In the �rst application, we give an algorithm for computing
the edit distance between two strings of length d in near-linear time, with 2Õ(

√
log d)

approximation.
In the second application, we design a sketching algorithm for the Ulam distance,
which achieves constant approximation with a sketch of only polylogarithmic size.
These results appear in Chapter 6.

In the second part, we present our impossibility results, which are summarized as follows:
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• We prove sketching lower bounds for the edit, Ulam, and EMD distances. For edit
and Ulam distances, we show that protocols with O(1) bits of communication can only
obtain approximation c ≥ Ω(log d/ log log d), where d is the length of the input strings.
These lower bounds also immediately imply distortion lower bounds for embedding the
metrics into `1 and powers of `2. These results appear in Chapter 7.

• We prove a lower bound for NN under Hamming and Euclidean distances for c = 1+ ε
approximation and small query time. Namely, we show that any data structure for
the (1 + ε)-NN, which uses constant number of probes to answer each query, must use
nΩ(1/ε2) space. This result appears in Chapter 8.

• We prove a lower bound for NN under the `∞ norm, which matches the upper bound
from [Ind98] in the decision tree model. Namely, we show that, for any ρ > 1, any
decision tree for the O(logρ log d)-NN, with sub-linear depth, must use nΩ(ρ) space.
This result appears in Chapter 9.

We conclude with some open questions raised by our work in Chapter 10.
Parts of this thesis have been published as the following papers and manuscripts: [AI06b,

AI08b, ADI+06, AI08a, AIK08, AIK09, AO09, AK07, AJP10, AIP06, ACP08]
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Chapter 2

Preliminaries

We now establish our notation and give motivation for some of the studied metrics, such as
edit, Ulam, and EMD distances.

2.1 A Primer on Metrics
2.1.1 Edit and Ulam distances
Consider two strings of length d from some alphabet Σ. The edit distance (or Levenshtein
distance) between two strings is the number of insertions, deletions, and substitutions needed
to transform one string into the other [Lev65]. We denote the distance between two strings
x, y ∈ Σd by ed(x, y).

The edit distance is of fundamental importance in several �elds such as computational
biology and text processing/searching, and consequently, problems involving edit distance
were studied extensively (see [Nav01], [Gus97], and references therein). In computational
biology, for instance, edit distance and its slight variants are the most elementary measures
of dissimilarity for genomic data, and thus improvements on edit distance algorithms have
the potential of major impact.

There are two important variants of edit distance obtained by restricting the set of
vectors x ∈ Σd:

• standard edit distance metric, i.e., edit distance on {0, 1}d,
• Ulam distance (or Ulam metric), where each vector x is non-repetitive, i.e., each symbol
s ∈ Σ appears at most once in x (in this case, we must have |Σ| ≥ d).1

There are several motivations for studying the Ulam distance. First of all, Ulam metric
models edit distance between strings with limited or no repetitions which appear in several
important contexts, most notably in ranking of objects such as webpages (see, e.g., [AJKS02]
and [Mar95]). In fact, Ulam distance is one of the standard ways to measure distance between
two permutations [Dia88], and a classical motivating example is the following: given a set
of books on a shelf, how many operations does one need to perform in order to sort the
books? Hence, Ulam distance received a fair amount of attention; see, for example, [AD99]
for a treatise of the Ulam distance between two random permutations.

1We note that the standard de�nition for Ulam distance is the number of characters moves to transform
x into y, for alphabet Σ = [d]. However, we will ignore this di�erence since, up to a factor of two, the two
de�nitions are equivalent.
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On a broader scale, we believe Ulam metric presents a concrete milestone towards the
seemingly elusive goal of designing algorithms for the standard edit distance (over binary
strings). Indeed, there are two reasons for this belief. First, Ulam metric appears to retain
one of the core di�culties of the edit distance on general strings, namely the existence of
�misalignments� between the two strings. In fact, there is no known lower bound that would
strictly separate Ulam metric from the general edit distance: all known lower bounds are
nearly the same (quantitatively) for both metrics. These include non-embeddability into
normed spaces results [KR06, AK07], lower bounds on sketching complexity [AK07] (see
also Chapter 7), and sub-linear time algorithms [BEK+03]. Second, Ulam distance is no
harder than edit distance over binary strings, at least up to a constant approximation, as
formalized in the lemma below. Thus, to obtain improved algorithm for the standard edit
distance, we must �rst obtain better algorithms for the Ulam distance.
Lemma 2.1.1. Let P,Q ∈ Σd be two permutations, and let π : Σ 7→ {0, 1} be a random
function (i.e., π substitutes every alphabet symbol with 0 or 1 at random). Then
• ed(π(P ), π(Q)) ≤ ed(P,Q) for any choice of π, and

• Prπ
[
ed(π(P ), π(Q)) ≥ Ω(1)·ed(P,Q)

] ≥ 1− 2−Ω(ed(P,Q)).
The proof is somewhat involved and appears in Appendix A.
We note that allowing alphabets Σ bigger than [d] does not make Ulam metric harder

(in all contexts considered in the thesis). Thus, we will consider that Σ = [d] in this thesis.
For concreteness, we demonstrate the following reduction from a big alphabet to a smaller
alphabet.
Fact 2.1.2. For any string length d, and alphabet Σ, |Σ| ≥ d, there is a function f : Σd →
Σ|Σ| such that for every pair of non-repetitive strings x, y ∈ Σd, we have that f(x), f(y) are
non-repetitive over Σ and

ed(x, y) ≤ ed(f(x), f(y)) ≤ 3 ed(x, y).

Proof. For given x ∈ Σd, construct f(x) ∈ Σ|Σ| by appending all the alphabet symbols
that are missing from x in an increasing order. Then, clearly ed(f(x), f(y)) ≥ ed(x, y).
Furthermore, we claim that ed(f(x), f(y)) ≤ 3 ed(x, y). Indeed, edit distance between the
starting block of length d of f(x) and of f(y) is ed(x, y). Also, if z ≤ ed(x, y) is the number
of symbols that appear in x but not in y and vice-versa, then the edit distance between the
ending block of length |Σ| − d of f(x) and f(y) is 2z. Total edit distance between f(x) and
f(y) is at most 3 ed(x, y).

There are also a number of other variants of edit distances, such as block edit distance
or edit distance with moves; for more details, we refer to [Sah08].

2.1.2 Earth-Mover Distance
The Earth Mover Distance (EMD) between two sets of points in the grid [d]t of equal sizes is
de�ned to be the cost of the minimum cost bipartite matching between the two pointsets.2
Namely for two sets A,B ⊂ [d]t, we have

EMD(A,B) = min
π:A→B

∑

x∈A
‖x− π(x)‖1

2This distance is also called the Wasserstein distance, or the transportation distance.
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where π ranges over all bijections from A to B.
EMD is a natural metric for comparing sets of geometric features of objects, and, as

such, has found applications in visual search and recognition. For example, an image can
be represented as a set of pixels in a color space, in which case we have t = 3 for a red-
green-blue representation. Computing EMD between such sets yields an accurate measure of
dissimilarity between color characteristics of the images [RTG00]. In an analogous manner,
an image can be represented as a set of representative geometric features, such as object
contours [GD04] and other features [GD05a]. This approach to measure dissimilarity of
images has lead to some of the state-of-the-art algorithms for image recognition on big
collections of images [GD05b, LSP06, GD06].

2.1.3 Normed spaces
The classical `p distance, for p ≥ 1, is de�ned for two points x, y ∈ Rd as

‖x− y‖p =

(
d∑

i=1

|xi − yi|p
)1/p

.

We will also refer to the distance as `dp to indicate that the points come from a d-dimensional
space.

The most classical setting is p = 2, for which we recover the Euclidean distance ‖x−y‖2 =
‖x − y‖. Another two important cases are p = 1 and p = ∞. When p = 1, the distance
becomes ‖x − y‖1 =

∑d
i=1 |xi − yi|, and it is also called the Manhattan distance. It is

essentially equivalent to the Hamming distance, which we denote by H(x, y). When p =∞,
the distance becomes ‖x− y‖∞ = maxdi=1 |xi − yi|.

We also de�ne powers of the `p spaces. The most notable example is the squared-`2 space
(also denoted (`2)2). This is a real space Rd with squared Euclidean distance, ‖x− y‖22. As
such, squared-`2 is not a metric because it does not satisfy the triangle inequality. It will
be useful for us nonetheless. We note that if a set of points S of squared-`2 satis�es the
triangle inequality, then S is called a negative type metric.

2.1.4 Product spaces
Product spaces are generalizations of the `p norms. We de�ne the `p-product of a metric
(X, dX) as follows. Let k ≥ 1 be an integer. The `p-product metric is the metric (Xk, dp,X),
denoted `p(X) or

⊕k
`p
X, where the distance between x = (x1, . . . xk) ∈ Xk and y =

(y1, . . . yk) ∈ Xk is

dp,X(x, y) =


∑

i∈[k]
(dX(xi, yi))

p




1/p

.

We illustrate the de�nition with the metric obtained by taking `∞-product of X = `d1,
denoted

⊕k
`∞ `1. In this space, the points can be thought of as two-dimensional arrays of

size k × d of reals. To compute the norm of a point, we �rst compute the `1 norm of each
row, thus reducing the array to a vector. Then we apply the `∞ norm on the resulting vector
to obtain the �nal norm. The distance between two points is the norm of their di�erence.

In the particular case of p = 1, we refer to the `1-product metric as a sum-product.
Similarly, we refer to the `∞-product metric as a max-product.
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Analogously, a min-product of X, denoted
⊕k

minX, is a space over Xk, where the �dis-
tance� between two points x = (x1, . . . xk) and y = (y1, . . . yk) is de�ned as

dmin,X(x, y) = min
i∈[k]

{
dX(xi, yi)

}
.

For the distance function in an arbitrary iterated product space, we use the subscript
to identify which operations are made in which order. For example d1,X is the distance
function of the space

⊕
`1
X.

We will also consider products under powers of an `p norm. For example, (`2)2-product
of X is the space Xk under the distance d22,X(x, y) =

∑k
i=1(dX(x, y))2. (We denote by

dpq ,M the distance function of some
⊕

(`p)qM.) Abusing terminology, we shall sometimes
continue to call this space a metric even when it is not guaranteed to satisfy the triangle
inequality.

We note that product spaces, including iterated ones, are examined in the study of the
geometry of Banach spaces, see e.g. [JL01, Chapter 1].

2.2 Metric Notions and Embeddings
There are several very close terms for a metric � distance, norm, metric, and space � that
we use in this thesis. We now explain our use of these terms.

A space is a tuple (M, dM) whereM is a set, and dM :M2 → R+ is non-negative and
symmetric (dM(x, y) = dM(y, x) for all x, y ∈ M). We also call M semi-metric and dM
semi-distance. For example, squared-`2 is a semi-metric.

A metric is a space (M, dM) where dM : M2 → R+ is non-negative and symmet-
ric, re�exive (dM(x, y) = 0 is equivalent to x = y), and satis�es the triangle inequality
(dM(x, z) ≤ dM(x, y) + dM(y, z) for all x, y, z ∈ M). We call dM a distance function,
and, abusing notation, we will call (M, dM) a distance as well. For example, `p's and edit
distance are metrics, whereas squared-`2 is not.

Finally, a norm is a tuple (M, ‖ · ‖), whereM is a vector space and the function ‖ · ‖ :
M→ R+ is positive scalable (‖ax‖ = |a| · ‖x‖ for all scalars a and vectors x ∈M), re�exive
(‖x‖ = 0 is equivalent to x = 0), and satis�es the triangle inequality (‖x+ y‖ ≤ ‖x‖+ ‖y‖).
The norm naturally gives rise to a metric, given by the distance function dM(x, y) = ‖x−y‖.
Abusing notation, we call the resulting metric a norm as well. For example, all `p's and
EMD are norms, whereas edit distance is not a norm.

For two metrics (M, dM) and (X, ρ), an embedding is a map φ :M→ X such that, for
all x, y ∈M, we have

dM(x, y) ≤ ρ(φ(x), φ(y)) ≤ γ · dM(x, y),

where γ ≥ 1 is the distortion of the embedding. In particular, we consider all embeddings
in this thesis to be non-contracting.

At times we consider embeddings into spaces (as opposed to metrics), which are de�ned
equivalently. For spaces that are powers of a metric, there is also an alternative view on
such as embedding. For example, a γ-distortion embedding of some metric (M, dM) into
squared-`2 is equivalent to embedding the root of the metric, (M,

√
dM), into `2, with

distortion √γ.
We say embedding φ is oblivious if it is randomized and, for any subset S ⊂ M of size

36



n, the distortion guarantee holds for all pairs x, y ∈ S with good probability (for example,
at least 1− n−2). The embedding φ is non-oblivious if it holds for a speci�c set S (i.e., φ is
allowed to depend on S).

We also de�ne γ-near metric to be a semimetric (M, dM) such that there exists some
metric (M, d∗M) with the property that, for any x, y ∈ M, we have that d∗M(x, y) ≤
dM(x, y) ≤ γ · d∗M(x, y).

2.3 High-Dimensional Euclidean Space
We describe some facts about the high-dimensional Euclidean space, including the dimen-
sionality reduction method in the Euclidean space.

The geometry of a sphere. For a point p ∈ Rd, we denote by B(p, r) the ball centered
at p with radius r, and we call B̄(p, r) its surface. For a ball with radius r in Rd, we
call its surface area Surd(r) and its volume Vold(r). We note that Surd = Sd · rd−1 and
Vold(r) = Sd·rd

d , where Sd = 2πd/2

Γ(d/2) is the surface area of a ball of radius one (see, for
example, [Pis89], page 11).

We will also need a (standard) bound on the volume of a cap of a ball B(p, r). Let
C(u, r) be the volume of the cap at distance u from the center of the ball. Alternatively,
C(u, r) is the half of the volume of the intersection of two balls of radius r with centers at
distance 2u. Furthermore, let I(u, r) = C(u,r)

Vold(r)
be the cap volume relative to the volume of

the entire sphere. We can bound I(u, r) as follows.

Fact 2.3.1. For any d ≥ 2 and 0 ≤ u < r,

Al√
d

(
1− (

u
r

)2
)d/2

≤ I(u, r) ≤
(
1− (

u
r

)2
)d/2

.

In particular, we have

Al√
d

exp
[
−d

2 · (u/r)2

1−(u/r)2

]
≤ I(u, r) ≤ exp

[−d
2 · (u/r)2

]
.

Proof. The result follows immediately from Lemma 9 of [FS02], which gives bounds on the
ratio of the surface areas of the cap to that of the ball. Speci�cally, note that I(u, r) has
the following form

I(u, r) = C(u,r)

Vold(r)
=

r∫

u

Sd−1

d−1 (r2−y2)
d−1
2 dy·

(
Sd
d r

d
)−1

= d
d−1 ·




r∫

u

Sd−1(r2 − y2)
d−1
2 dy ·

(
Sdr

d
)−1


 .

The quantity
∫ r
u Sd−1(r2−y2)

d−1
2 dy ·(Sdrd

)−1 represents precisely the ratio of the surface
area of the cap C(u, r) (excluding the base) to the surface area of a ball of radius r in the
(d+ 1)-dimensional space. This ratio is bounded [FS02] as

Al√
d+1

(
1− (

u
r

)2
) d

2 ≤
r∫

u

Sd−1(r2 − y2)
d−1
2 dy · (Sdrt

)−1 ≤ 1
2

(
1− (

u
r

)2
) d

2
.
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Thus, multiplying the above bounds by d
d−1 , we obtain that

d
d−1 · Al√

d+1

(
1− (

u
r

)2
)d/2

≤ I(u, r) ≤ d
d−1 · 1

2

(
1− (

u
r

)2
)d/2

.

Using the standard estimate that exp
[
− x

1−x
]
≤ 1 − x ≤ exp [−x] for x ∈ (0, 1), we obtain

the conclusion.

Dimensionality reduction. We will also use the Johnson-Lindenstrauss lemma on the
(random) dimensionality reduction in the Euclidean spaces [JL84]. Informally, the Johnson-
Lindenstrauss lemma states that, for a set of n points in a high-dimensional space, a pro-
jection to a random subspace of dimension only t = O( logn

ε2
) preserves all the inter-point

distances up to a 1 ± ε factor. In particular, we use the following form of the lemma
(see [JL84, IM98, DG99]). Consider a random matrix A ∈ Mt,d by choosing each element
of A from normal distribution N(0, 1), multiplied by a scaling factor 1√

t
. This matrix A

represents the random linear projection from Rd to Rt.

Fact 2.3.2 ([JL84, IM98, DG99]). For any vector v ∈ Rd and any constant ε ∈ (0, 1), we
have

Pr
A

[|‖Av‖ − ‖v‖| > ε‖v‖] ≤ O(t) · exp
[−tε2/12

]
.

Fact 2.3.3 ([IM98]). For any vector v ∈ Rd and any constant α ≥ 2, we have

Pr
A

[‖Av‖ > α‖v‖] ≤ exp
[−Ω(t

√
α)

]
.

2.4 Probability
For a random variable x from some domain D, we denote its probability distribution func-
tions (pdf) by Px. We use the notation x← Px to say that x is drawn from the distribution
Px.

For two random variables x, y with pdfs Px and Py, the statistical distance (or, total
variation distance) between x and y is de�ned as the half of the L1 distance between Px and
Py:

1
2‖Px − Py‖1 = 1

2

∫

z∈D
|Px(z)− Py(z)|dz.

We denote this distance by TV(Px,Py) or simply ∆(Px,Py) when this causes no confusion.
A standard and very useful fact about the statistical distance is the following. For any

randomized algorithm A that takes as input the variable x drawn from Px, if instead we
run A on y drawn from some distribution Py, then the probability of success of A changes
by at most the statistical distance between Px and Py:

Fact 2.4.1 ([SV03, Fact 2.4]). For any randomized algorithm A with random coins C taking
as input x ∈ D, for any distributions Px and Py over the domain D, we have that

∣∣∣∣∣∣
Pr

x←Px
C

[A(x) = 1]− Pr
y←Py

C

[A(y) = 1]

∣∣∣∣∣∣
≤ TV(Px,Py).
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Also, we use the following triangle inequality on statistical distance. For a pdf Px over
domain D and k ∈ N, de�ne a new pdf (Px)k = Px × . . .× Px, i.e., it is the pdf of the new
random variable x′ ∈ Dk where each of the k coordinates is chosen from the distribution Px
i.i.d.

Fact 2.4.2 ([SV03, Fact 2.3]). Consider variables x, y from some domain D, and let Px,Py
be their pdfs. Fix k ∈ N. De�ne new random variables x′, y′ ∈ Dk with pdfs (Px)k and (Py)k

respectively. Then, we have
TV(x′, y′) ≤ k · TV(x, y).

Concentration Bounds. We use the following standard bounds; see [MR95] for reference.

Fact 2.4.3 (Markov Bound). Let X be a positive random variable. Then, for any t > 0, we
have that PrX [X ≥ t] ≤ E [X]/t.

Fact 2.4.4 (Cherno� Bound). Let Xi, i ∈ [n], be i.i.d. random Poisson trials with E [Xi] = µ
for some µ ∈ (0, 1). Then, for any ε ∈ (0, 1), we have Pr[|∑Xi−µn| > ε ·µn] ≤ 2e−µnε2/2.

Also, for δ > 6, we have Pr[
∑
Xi ≥ δ · µn] ≤ 2−δµn.

Gaussian distribution. We will often use the Gaussian distribution (or normal distribu-
tion), parametrized by variance σ2. The pdf of the Gaussian distribution with variance σ2

is N(0, σ2) = 1√
2πσ

e−x2/(2σ2). One standard fact about Gaussians is the following.

Fact 2.4.5. Let x and y be random variables distributed as Gaussians with variances σ2
1

and σ2
2 respectively. Then the new random variable x+ y is distributed as a Gaussian with

variance σ2
1 + σ2

2.

A d-dimensional Gaussian distribution is the distribution of d-dimensional random vari-
able, where each coordinate is drawn i.i.d. from the Gaussian distribution. The d-dimensional
Gaussian distribution is spherically symmetric.

Jensen's inequality. Consider some continuous function f : [a, b] → R that is concave.
Then Jensen's inequality states:

Fact 2.4.6 (Jensen's inequality). Let x be random variable on the interval [a, b]. Then for
any concave function f , we have Ex [f(x)] ≤ f(Ex [x]).

In particular, we note that f(x) = x ln 1/x is concave on the interval [0, 1].
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Algorithms
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Chapter 3

Locality Sensitive Hashing in the
Euclidean Space

In this chapter, we present a new algorithm for solving the NN problem in the d-dimensional
Euclidean space. Our algorithm achieves dnρ query time and dn1+ρ space and preprocess-
ing, where ρ(c) = 1/c2 + o(1). This signi�cantly improves over the earlier running time
of [DIIM04]. In particular, for c = 2, our exponent tends to 0.25, while the exponent
in [DIIM04] was around 0.45.

Our new algorithm falls into the class of algorithms based on Locality-Sensitive Hashing
(LSH) scheme, introduced in [IM98], and is near-optimal in this class of algorithms, as
proven by [MNP06, PTW08].

In the new algorithm, the convergence of the exponent to the 1/c2 limit is rather slow.
To be more precise: the running time of the algorithm is bounded by the formula

tO(t)n1/c2+O(log t)/
√
t

where t is a parameter chosen to minimize the expression. The tO(t) factor appears due to
the fact that our algorithm exploits certain con�gurations of points in a t-dimensional space;
the �quality� of the con�gurations increases with t. One can observe that the parameter t
needs to be somewhat large for the exponent to be competitive against the earlier bounds.
But then the factor tO(t) becomes very large, erasing the speedup gained from the improved
exponent (unless n is really large).

To overcome this di�culty, we give a modi�cation of the algorithm to make it e�cient
for more moderate values of n. Speci�cally, we replace the aforementioned con�gurations of
points by known constructions of �nice� point-sets in speci�c dimensions. In particular, by
utilizing the Leech Lattice [Lee67] in 24 dimensions, we obtain an algorithm with exponent
ρ(c) such that ρ(2) ≤ 0.37, while the leading term in the running time is reduced to only few
hundred. Moreover, if the dimension d does not exceed 24, the exponent is reduced1 further,
and we achieve ρ(2) ≤ 0.27. The leading term in the running time remains the same.

Finally, we show that we can modify our algorithm to obtain a data structure with a
near-linear space of O(dn + n logO(1) n) and dnO(1/c2) query time. This improves over the
earlier bound of dnO(1/c) due to [Pan06].

1An astute reader will observe that if both the dimension d and approximation factor c are �xed constants,
one can obtain a data structure with constant query time, essentially via table lookup. However, this
approach leads to �big-Oh� constants that are exponential in the dimension, which defeats our goal of
achieving a practical algorithm.
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Before presenting our algorithms, we give an overview of the Locality-Sensitive Hashing
scheme and how it is used to obtain NN algorithms. The results from this chapter have
previously appeared in [AI06b, AI08b, ADI+06].

3.1 LSH: A Primer
The LSH scheme relies on the existence of locality-sensitive hash functions. Let H be a
family of hash functions mapping Rd to some discrete universe U . For some arbitrary two
points p and q, consider the process in which we choose a function h from H uniformly
at random, and analyze the probability that h(p) = h(q). The family H is called locality
sensitive (with proper parameters) if it satis�es the following condition.

De�nition 3.1.1 (Locality-sensitive hashing). A family H is called (R, cR, P1, P2)-sensitive
if for any two points p, q ∈ Rd

• if ‖p− q‖ ≤ R then PrH[h(q) = h(p)] ≥ P1,

• if ‖p− q‖ ≥ cR then PrH[h(q) = h(p)] ≤ P2.

In order for a locality-sensitive hash (LSH) family to be useful, it has to satisfy P1 > P2.
To illustrate the concept, consider the following example. Assume that the data points

are binary, that is, each coordinate is either 0 or 1. In addition, assume that the distance
between points p and q is computed according to the Hamming distance. In this case we can
use a particularly simple family of functions H which contains all projections of the input
point on one of the coordinates. That is, H contains all functions hi from {0, 1}d to {0, 1}
such that hi(p) = pi, for i = 1 . . . d. Choosing one hash function h uniformly at random
from H means that h(p) returns a random coordinate of p (note however, that di�erent
applications of h return the same coordinate of the argument).

To see that the family H is locality-sensitive with non-trivial parameters, observe that
the probability PrH[h(p) = h(q)] is equal to the fraction of coordinates on which p and q
agree. Therefore, P1 = 1−R/d, while P2 = 1− cR/d. As long as the approximation factor
c is greater than 1, we have P1 > P2.

3.1.1 The algorithm
An LSH family H can be used to design an e�cient algorithm for approximate near neighbor
search. However, one typically cannot use H as is, since the gap between the probabilities
P1 and P2 could be quite small. Instead, an �ampli�cation� process is needed in order to
achieve the desired probabilities of collision. We describe this step next, and present the
complete algorithm in the Figure 3-1.

Given a family H of hash functions with parameters (R, cR, P1, P2) as in the above
de�nition, we amplify the gap between the �high� probability P1 and �low� probability P2

by concatenating several functions. In particular, for parameters k and L (speci�ed later),
we choose L functions gj(q) = (h1,j(q), . . . , hk,j(q)), where ht,j(1 ≤ t ≤ k, 1 ≤ j ≤ L) are
chosen independently and uniformly at random from H. These are the actual functions that
we use to hash the data points.

The data structure is constructed by placing each point p from the input set into a bucket
gj(p), for j = 1, . . . , L. Since the total number of buckets may be large, we retain only the
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Preprocessing:
1. Choose L functions gj , j = 1, . . . L, by setting gj = (h1,j , h2,j , . . . hk,j), where h1,j , . . . hk,j are chosen

at random from the LSH family H.
2. Construct L hash tables, where, for each j = 1, . . . L, the jth hash table contains the dataset points

hashed using the function gj .
Query algorithm for a query point q:

1. For each j = 1, 2, . . . L

i) Retrieve the points from the bucket gj(q) in the jth hash table.
ii) For each of the retrieved point, compute the distance from q to it, and report the point if it is

a correct answer (cR-near neighbor for Strategy 1, and R-near neighbor for Strategy 2).
iii) (optional) Stop as soon as the number of reported points is more than L′.

Figure 3-1: Preprocessing and query algorithms of the basic LSH algorithm.

non-empty buckets by resorting to (standard) hashing2 of the values gj(p). In this way, the
data structure uses only O(nL) memory cells; note that it su�ces that the buckets store the
pointers to data points, not the points themselves.

To process a query q, we scan through the buckets g1(q), . . . , gL(q), and retrieve the
points stored in them. After retrieving the points, we compute their distances to the query
point, and report any point that is a valid answer to the query. Two concrete scanning
strategies are possible:

1. Interrupt search after �nding the �rst L′ points (including duplicates), for some pa-
rameter L′.

2. Continue search until all points from all buckets are retrieved; no additional parameter
is required.

The two strategies lead to di�erent behaviors of the algorithms. In particular, Strategy
1 solves the (c,R)-near neighbor problem, while Strategy 2 solves the R-near neighbor
reporting problem.

Strategy 1: It is shown in [IM98, GIM99] that the �rst strategy, with L′ = 3L, yields
a solution to the randomized c-approximate R-near neighbor problem, with parameters R
and δ, for some constant failure probability δ < 1. To obtain that guarantee, it su�ces
to set L to Θ(nρ), where ρ = ln 1/P1

ln 1/P2
[GIM99], and k to log1/P2

n. Note that this implies
that the algorithm runs in time proportional to nρ, which is sublinear in n if P1 > P2.
For example, if we use the hash functions for binary vectors mentioned earlier, we obtain
ρ = 1/c [IM98, GIM99].

Strategy 2: The second strategy enables us to solve the randomized R-near neighbor
reporting problem (as de�ned in Section 1.2). The value of the failure probability δ depends
on the choice of the parameters k and L. Conversely, for each δ one can provide parameters
k and L so that the error probability is smaller than δ. The query time is also dependent
on k and L: it could be as high as Θ(n) in the worst case, but for many natural data sets a
proper choice of parameters results in a sublinear query time.

The details of the analysis are as follows. Let p be any R-neighbor of q, and consider
any parameter k. For any function gi, the probability that gi(p) = gi(q) is at least P k1 .

2See [CLRS01] for more details on hashing.
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points p and q under a single random hash function h from
the LSH family.
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Figure 3-2: The graphs of the probability of collision of points p and q as a function of the
distance between p and q for di�erent values of k and L. The points p and q are d = 100
dimensional binary vectors under the Hamming distance. The LSH family H is the one
described in Section 3.1.

Therefore, the probability that gi(p) = gi(q) for some i = 1 . . . L is at least 1 − (1 − P k1 )L.
If we set L = log1−Pk

1
δ so that (1− P k1 )L ≤ δ, then any R-neighbor of q is returned by the

algorithm with probability at least 1− δ.
How should the parameter k be chosen? Intuitively, larger values of k lead to a larger gap

between the probabilities of collision for �close� points and �far� points; the probabilities are
P k1 and P k2 , respectively (see Figure 3-2 for an illustration). The bene�t of this ampli�cation
is that the hash functions are more �selective�. At the same time, if k is �large� then P k1 is
�small�, which means that L must be su�ciently �large� to ensure that an R-near neighbor
collides with the query point at least once.

To obtain worst-case guarantees, we choose k and L to be k = log1/P2
n and L = nρ,

where ρ = log 1/P1

log 1/P2
. The query time becomes O (nρk · τ), where τ is the time to compute

h ∈ H, and the preprocessing time becomes O
(
n1+ρk · τ).

In practice, we may want to choose parameter k (and thus L) di�erently. One such
approach to choosing k was introduced in the E2LSH package [AI05]. There, the data
structure optimized the parameter k as a function of the data set and a set of sample
queries. Speci�cally, given the data set, a query point, and a �xed k, one can estimate
precisely the expected number of collisions and thus the time for distance computations, as
well as the time to hash the query into all L hash tables. The sum of the estimates of these
two terms is the estimate of the total query time for this particular query. E2LSH chooses
k that minimizes this sum over a small set of sample queries.
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3.2 Near-Optimal LSH for Euclidean Space
In this section we present a new LSH family, yielding an algorithm with query time exponent3

ρ(c) = 1/c2 +O
(

log logn

log1/5 n

)
.

For large enough n, the value of ρ(c) tends to 1/c2. We then obtain the following algorithm.

Theorem 3.2.1. There exists an algorithm solving c-NN problem in d-dimensional Eu-
clidean space that achieves dn1/c2+o(1) query time and dn1+1/c2+o(1) space and preprocessing.

We �rst give a high-level intuition of our new LSH family. We obtain our result by
carefully designing a family of locality-sensitive hash functions in `2. The starting point
of our construction is the �line partitioning� method of [DIIM04]. There, a point p was
mapped into R1 using a random projection. Then, the line R1 was partitioned into intervals
of length w, where w is a parameter. The hash function for p returned the index of the
interval containing the projection of p.

An analysis in [DIIM04] showed that the query time exponent has an interesting depen-
dence on the parameter w. If w tends to in�nity, the exponent tends to 1/c, which yields no
improvement over [IM98, GIM99]. However, for small values of w, the exponent lies slightly
below 1/c. In fact, the unique minimum exists for each c.

In our new algorithm we utilize a �multi-dimensional version� of the aforementioned
approach. Speci�cally, we �rst perform random projection into Rt, where t is super-constant,
but relatively small (i.e., t = o(logn)). Then we partition the space Rt into cells. The hash
function function returns the index of the cell which contains projected point p.

The partitioning of the space Rt is somewhat more involved than its one-dimensional
counterpart. First, observe that the natural idea of partitioning using a grid does not
work. This is because this process roughly corresponds to hashing using concatenation of
several one-dimensional functions (as in [DIIM04]). Since the LSH algorithms perform such
concatenation anyway, grid partitioning does not result in any improvement. Instead, we
use an approach similar to the method of �ball partitioning�, introduced in [CCG+98] in
the context of embeddings into tree metrics. The partitioning is obtained as follows. We
create a sequence of balls B1, B2 . . ., each of radius w, with centers chosen independently
�at random�. Each ball Bi then de�nes a cell, containing points Bi \ ∪j<iBj .

In order to apply this method in our context, we need to take care of a few issues. First,
locating a cell containing a given point could require enumeration of all balls, which would
take an unbounded amount of time. Instead, we show that one can simulate the above
procedure by replacing each ball by a �grid of balls�. It is not di�cult then to observe that
a �nite (albeit exponential in t) number U of such grids su�ces to cover all points in Rt.
An example of such partitioning (for t = 2 and U = 5) is given in Figure 3-3.

The second and the main issue is the choice of w. Again, it turns out that for large w,
the method yields only the exponent of 1/c. Speci�cally, it was shown in [CCG+98] that
for any two points p, q ∈ Rt, the probability that the partitioning separates p and q is at
most O

(√
t · ‖p− q‖/w)

. This formula can be showed to be tight for the range of w where
it makes sense as a lower bound, that is, for w = Ω

(√
t · ‖p− q‖). However, as long as the

separation probability depends linearly on the distance between p and q, the exponent ρ is
3A tighter analysis gives ρ(c) = 1/c2 + O(log log n/ log1/3 n) [AI06a]. Here we present a simpler bound

for a more simpli�ed exposition.
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Figure 3-3: An illustration of the ball partitioning of the 2-dimensional space.

still equal to 1/c. Fortunately, a more careful analysis shows that, as in the one-dimensional
case, the minimum is achieved for �nite w. For that value of w, the exponent tends to 1/c2

as t tends to in�nity.
We observe that we can assume that R = 1 for the rest of this chapter (by rescaling the

coordinates).

3.2.1 Algorithm description
We �rst describe an �ideal� LSH family for `2. This approach leads to the desired bound on
ρ but the resulting hash functions have a prohibitively high time complexity. We then show
how to modify this �ideal� LSH family to obtain one with a better time complexity. The
�nal description of the LSH family is presented in the �gure 3-4.

Ideal LSH family. Construct a hash function h̃ as follows. Consider Gd, a regular in�nite
grid of balls in Rd: each ball has radius w and has the center at 4w ·Zd. Let Gdu, for positive
integer u, be the grid Gd shifted uniformly at random; in other words, Gdu = Gd+ su, where
su ∈ [0, 4w]d. Now we choose as many Gdu's as are needed to cover the entire space Rd (i.e.,
until each point from Rd belongs to at least one of the balls). Suppose we need U such grids
to cover the entire space with high probability.

We de�ne h̃ on a point p as a tuple (u, x1, x2, ...xd), u ∈ [1, U ] and (x1, ...xd) ∈ Gdu. The
tuple (u, x1, x2, ...xd) speci�es the ball which contains the point p: p ∈ B((x1, x2, . . . xn), w).
If there are several balls that contain p, then we take the one with the smallest value u.
Computing h̃(p) can be done in τ = O(U) time: we iterate through all Gd1, Gd2, ...GdU , and
�nd the �rst Gdu such that p is inside a ball with the center from Gdu.

Intuitively, this family satis�es our locality-sensitive de�nition: the closer are the points
p, q, the higher is the probability that p, q belong to the same ball. Indeed, if we choose a
suitable radius w ≥ 1/2, then we will get L = nρ = n1/c2+o(1).

However, the de�ciency of this family is that the time to compute h̃(p) might be too
large if d = Ω(logn) since we need to set U = Ω(2d) (see Lemma 3.2.2). We show how to
circumvent this de�ciency next.

Actual LSH family. Our actual construction utilizes the �ideal� family described above,
while introducing an additional step, necessary to reduce U , the number of grids covering
the space. The algorithm is given in Figure 3-4.
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Initialization of a hash function h ∈ H
1. For u = 1 to U , choose a random shift su ∈ [0, 4w]t, which speci�es the grid Gt

u = Gt + su in the
t-dimensional Euclidean space.

2. Choose a matrix A ∈ Mt,d, where each entry Aij is distributed according to the normal distribution
N(0, 1) times a scaling factor, 1√

t
. The matrix A represents a random projection from Rd to Rt.

Computing h() on a point p ∈ Rd

1. Let p′ = Ap be the projection of the point p onto the t-dimensional subspace given by A.
2. For each u = 1, 2, . . . U

3. Check whether B(p′, w) ∩Gt
u 6= ∅, i.e., whether there exist some (x1, x2, . . . xt) ∈ Gt

u such that
p ∈ B((x1, x2, . . . xt), w).

4. Once we �nd such (x1, x2, . . . xt), set h(p) = (u, x1, x2, . . . xt), and stop.

5. Return 0t+1 if we do not �nd any such ball.

Figure 3-4: Algorithms for initializing a hash function h from the LSH hash family, and for
computing h(p) for a point p ∈ Rd.

To reduce U , we project Rd to a lower-dimensional space Rt via a random dimensionality
reduction. The parameter t is o(logn), such that factors exponential in t are o(n). After
performing the projection, we choose the grids Gt1, Gt2, ...GtU in the lower-dimensional space
Rt. Now, to compute h(p), we compute the projection of p onto the lower dimensional space
Rt, and process the projected point as described earlier. In short, the actual hash function
is h(p) = h̃(Ap), where A is a random matrix representing the dimensionality reduction
mapping, and h̃ works in the t-dimensional space. Note that τ becomes τ = O(dt) +O(Ut)
corresponding to the projection and the bucket-computation stages respectively.

3.2.2 Analysis of the LSH Family
We now prove the main theorem of this chapter, Theorem 3.2.1. The theorem relies on two
lemmas.

The �rst lemma bounds the number of grids Gd needed to cover the entire space Rd, for
any dimension d. This number impacts directly the query time of our algorithm.

Lemma 3.2.2. Consider a d-dimensional space Rd, and �x some δ > 0. Let Gd be a
regular in�nite grid of balls of radius w placed at coordinates σw · Zd, where 2 ≤ σ ≤ d.
De�ne Gdu, for u ∈ N, as Gdu = Gd + su, where su ∈ [0, σw]d is a random shift of the grid
Gd. If Ud = 2O(d log d) log 1/δ, then the grids Gd1, Gd2, . . . GdUd

cover the entire space Rd, with
probability ar least 1− δ.

The second lemma is the key technical ingredient to our result, and it bounds the pa-
rameter ρ.

Lemma 3.2.3. Consider the hash function h described in the Figure 3-4, and let p, q be
some points in Rd. Let P1 be the probability that h(p) = h(q) given that ||p− q|| ≤ 1, and let
P2 be the probability that h(p) = h(q) given that ||p− q|| ≥ c. Then, for w = t1/3, we obtain
ρ = log 1/P1

log 1/P2
= 1/c2 +O

(
1/t1/4

)
. Moreover, P2 ≥ exp

[−O(t1/3)
]
.

We remark that, one can also obtain a tighter bound on the second-order term of ρ,
namely ρ = 1/c2 + O

(
log t√
t

)
(see [AI06a]). We omit that derivation from this thesis as it
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does not lead to a better exponent in Theorem 3.2.1, and improves only the second order
terms.

Before proving the two lemma, we now show how to complete the proof of Theorem 3.2.1.

Proof of Theorem 3.2.1. The result follows by using the LSH family in Figure 3-4 with the
general LSH scheme described in Section 3.1. By Lemma 3.2.3, for t = log4/5 n, we have
ρ = 1/c2 +O

(
1

log1/5 n

)
. Furthermore, k can be bounded as

k =
log n

log 1/P2
≤ logn

Ω(t1/3)
≤ O(logn).

Finally, by Lemma 3.2.2 for σ = 4, we have that τ = O(dt) + O(U t) = O(dt) +
O

(
2t log t log n

)
= O(dt) + 2O(log4/5 n log logn) logn = O(dno(1)). The theorem follows.

We now prove Lemmas 3.2.2 and 3.2.3.

Proof of Lemma 3.2.2. This lemma is a relatively standard random packing argument (see,
e.g., [PA95]). For completeness, we give a version of the argument below.

The intuition behind the lemma is simple. First, observe that the entire space is covered
if and only if the hypercube [0, σw]d is covered by grids Gdu (due to the regularity of the
grids). Now, the intersection of the hypercube [0, σw]d and a grid Gdu has volume precisely
Vold(w) = Sd · wd/d, and covers a fraction of 2−O(d log d) of the hypercube. If the grids did
not intersect, we would need only 2O(d log d) grids to cover the space. In general, a grid will
cover an expected of 2−O(d log d) fraction of the hypercube, unless most of the hypercube has
been already covered (in which case, we are close to being done anyways).

We argue formally as follows. We partition the hypercube [0, σw]d into smaller �micro-
cubes� and prove that each of them is covered with a high enough probability. Speci�cally,
we partition the hypercube [0, σw]d into smaller micro-cubes, each of size w√

d
× w√

d
· · · × w√

d
.

There are N = (σw)d

(w/
√
d)d

= (σ
√
d)d such micro-cubes in total. Let x be the probability that a

micro-cube is covered by one grid Gdu. Then x ≥ (w/
√
d)d

(σw)d = 1/N because, for a micro-cube
to be covered, it su�ces that the center of the ball B(0d + su, w) falls inside the micro-
cube, which happens with probability 1/N . Furthermore, if xU is the probability that a
micro-cube is covered by any of the Ud grids Gdu, then xU ≥ 1− (1− x)Ud .

Thus, we can compute the probability that there exists at least one uncovered micro-
cube, which is also the probability that the entire [0, σw]d hypercube is uncovered. Set
Ud = aN(log n + logN) for a suitable constant a. Using union bound, we obtain that the
probability that the entire hypercube is not covered is at most

N (1− x)Ud ≤ N(1− 1/N)Ud ≤ N(1− 1/N)aN(logn+logN) ≤ N2− logn−logN ≤ 1/n.

Concluding, with probability at least 1 − 1/n we cover the entire space with the grids
Gd1, . . . G

d
Ud
, if we choose Ud = O(N(log n+ logN)) = 2O(d log d) log n.

We now proceed to proving Lemma 3.2.3.

Proof. Fix some points p, q ∈ Rd at distance ∆ = ‖p − q‖. The proof proceeds in three
stages. First we show that the e�ects of the dimensionality reduction into Rt are negligible.
Second, we relate the probability that h(p) = h(q) to the volume of a certain cap of a sphere
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in Rt. Finally, using standard approximations of high-dimensional spheres, we compute the
probabilities P1, P2 and then the value ρ.

The points p and q are projected into points p′ = Ap and q′ = Aq, where p′, q′ ∈ Rt. For
∆′ = ‖p′−q′‖, the distortion of the projection is ∆′

∆ = ‖p′−q′‖
‖p−q‖ and we consider it to be �high�

when it is either greater than 1 + ε or smaller than 1 − ε, for some ε. The probability of
high distortion is upper bounded by f = exp

[−Ω(ε2t)
]
, using standard bound on distortion

under random projections, namely Fact 2.3.2. We use ε = 1/ 4
√
t, in which case, we obtain

the following bound.
Claim 3.2.4. When ε = t−1/4, we have ∆′/∆ ∈ [1 − ε, 1 + ε] with probability at least
1− f = 1− exp

[−Ω(
√
t)

]
.

Now consider two points p′, q′ ∈ Rt at distance ∆′. The sequence of grids Gt1, Gt2, . . . , GtU
covers the entire space Rt with very high probability, and thus p′ and q′ are inside some
balls. Let Gtu be the �rst grid such that either p′ or q′ is inside some ball B(x,w) which
belongs to the grid Gtu. The position of this ball completely determines whether h(p) = h(q)
or not. In particular, h(p) = h(q) when both p′ and q′ are inside B(x,w), or, equivalently,
x ∈ B(p′, w) ∩B(q′, w). Otherwise, h(p) 6= h(q) when exactly one of p′, q′ is inside B(x,w),
or equivalently, x is inside the symmetric di�erence of B(p′, w) and B(q′, w)). Thus, the
probability that h(p) = h(q) is exactly the ratio of the volume of the intersection of two
balls, B(p′, w) ∩ B(q′, w), over the volume of the union of two balls, B(p′, w) ∪ B(q′, w).
See the Figure 3-5 for an illustration. We deduce the following expression for probability
that h(p) = h(q). As de�ned in the preliminaries, C(∆′/2, w) denotes the cap volume, and
I(∆′/2, w) denotes the cap volume divided by the ball volume.

Pr
h

[h(p) = h(q)] =
|B(p′, w) ∩B(q′, w)|
|B(p′, w) ∪B(q′, w)| =

2C(∆′/2, w)
2Volt(w)− 2C(∆′/2, w)

=
I(∆′/2, w)

1− I(∆′/2, w)
(3.1)

Figure 3-5: A diagram of the balls B(p′, w) and B(q′, w). The red zone is the locus of the
centers of grid balls capturing p′ but not q′; blue zone � for those capturing q′ but not
p′; magenta (intersection) zone � for those capturing both p′ and q′. The magenta zone is
composed of exactly two caps (separated by the dotted line), whose volume we denote by
C(∆′/2, w).

The main remaining step is to evaluate the quantity I(∆′/2, w). We give below a some-

49



what informal calculations below, which we formalize later on. The quantity I(∆′/2, w) can
also be viewed as the following probability: �draw a random point x from the ball of radius
w, what is the probability that the �rst coordinate of x is greater than ∆′/2 ?� A standard
fact in high-dimension geometry is that the distribution of a random point x from a ball
of radius w in Rt is well approximated by the t-dimensional normal distribution, when t is
su�ciently high. A t-dimensional normal distribution is a product of t independent normal
distributions, in particular implying that the �rst coordinate of x is distributed as a normal
distribution. Thus, essentially, I(∆′/2, w) may be approximated by the tail of a normal
distribution, in particular a tail starting at distance ∆′/2w from the origin. Now, standard
facts about tails of normal distribution tell us that this tail is roughly equal to e−A·∆′2 ,
where A is some constant (dependent on w and the dimension t). Finally, ρ is the ratio of
the exponents of P1 and P2, the collision probabilities when ∆′ = 1 and ∆′ = c respectively.
Hence, we obtain a value of ρ which is roughly equal to 1/c2.

We now formalize the calculations from above. We use the estimate of I(∆′/2, w) from
Fact 2.3.1. We compute P1 and P2 separately. We use the fact that ∆′/∆ ∈ [1 − ε, 1 + ε]
with probability at least 1 − f = 1 − exp

[−Ω(
√
t)

]
by Claim 3.2.4. We compute P1 from

Eqn. (3.1) by setting ∆ = 1, in which case also ∆′ ≤ 1 + ε with probability at least 1− f :

P1 ≥ I(∆′/2, w)− f ≥ Al√
t
exp

[
− t

2 · (∆′/2w)2

1−(∆′/2w)2

]
− f ≥ Al

2
√
t
exp

[
−t1/3 · (1+ε)2(1+1/w2)

8

]
.

(3.2)
Similarly, we compute P2 using Fact 2.3.1 and setting ∆ = c, in which case ∆′ ≥ c(1 − ε)
with probability at least 1− f :

P2 ≤ 2I(∆′/2, w) + f ≤ 2 exp
[− t

2 · (∆′/2w)2
]
+ f ≤ 3 exp

[
−t1/3 · c2 · (1−ε)2

8

]
. (3.3)

Finally, we get the following bound on ρ(c) = log 1/P1

log 1/P2
:

ρ(c) ≤ t1/3· (1+ε)2(1+1/w2)
8 +O(log t)

t1/3·c2· (1−ε)
2

8 −O(1)
≤ 1

c2
+O(ε) +O(1/w2) +O

(
log t
t1/3

)
≤ 1

c2
+O(1/t1/4).

(3.4)
This completes the proof of Lemma 3.2.3.

3.3 Lattice-based LSH Family
In this section we describe a practical variant of the above LSH family based on lattices in
Euclidean spaces. Although, theoretically, these families are not asymptotically better than
the ones described earlier, they are likely to perform better in practice, due to the much
lower �big-Oh� constants.

Our goal is to introduce a di�erent (but related) partitioning method that avoids the tO(t)

factor. Speci�cally, we use tessellations induced by (randomly shifted) Voronoi diagrams of
�xed t-dimensional point constellations which have the following two nice properties:

• The closest constellation point to a given point can be found e�ciently, and

• The exponent ρ induced by the constellation is as close to 1/c2 as possible.

The partitioning is then implemented by randomly projecting the points into Rt, and
using the Voronoi diagram. We discovered that a constellation in 24 dimensions known as
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the Leech Lattice [Lee67] satis�es the above properties quite well. First, the nearest point
in the lattice can be found by using a (bounded) decoder of [AB96] which perform only 519
�oating point operations per decoded point. Second, the exponent ρ(c) guaranteed by that
decoder is quite attractive: for c = 2 the exponent ρ(2) is less than 0.37. The intuitive
reason for that is that the Leech Lattice is a �very symmetric� constellation, and thus its
Voronoi cells are very �round�. Moreover, if the dimension d does not exceed 24, then we
can skip the dimensionality reduction part. In that case we obtain ρ(2) ≤ 0.27, while the
leading term in the running time remains the same.

We start by presenting the general lattice-based approach. Then, we give an algorithm
based on a concrete 24-dimensional lattice, called the Leech Lattice [Lee67]. For the Leech
lattice-based algorithm, we include the actual values of the resulting exponent ρ, the main
indicator of the performance.

3.3.1 Lattices in arbitrary dimension
The algorithm in this section uses an arbitrary lattice in some t-dimensional space. An
example of a t-dimensional lattice is the regular grid of points in Rt, although, as men-
tioned in Section 3.2, it does not serve well our purposes. For a given lattice, we need an
e�cient lattice decoding function, to which we refer as LatticeDecode(x). The function
LatticeDecode(x) takes as input a point x ∈ Rt and returns the lattice point that is the
closest to x.

Given a speci�c lattice with a decoding function LatticeDecode(x), an LSH function
is constructed as follows (formally presented in Figure 3-6). First, if d > t, we choose
a random projection from the d-dimensional space to the t-dimensional space, which we
represent as a matrix A of dimension t × d. If d ≤ t, then, instead, we choose a random
rotation in the t-dimensional space, which we also represent as a matrix A of dimension t×d
(here, A is equal to the �rst d columns of an random orthonormal matrix of dimension t×t).
Finally, we choose a random translation in the t-dimensional space, which we represent as a
vector T of dimension t× 1. The values of A and T identify an LSH function.

For an LSH function h speci�ed byA and T , we de�ne h(p) as being h(p) = LatticeDecode(A·
p + T ). Or, in words, for p ∈ Rd, we �rst project p into Rt using A (or rotate it if d ≤ t);
then, we translate the projection using T ; and, �nally, we �nd the closest point in lattice
using LatticeDecode. The output of LatticeDecode gives the value of h(p).

The performance of the resulting LSH scheme depends heavily on the choice of the
lattice. Intuitively, we would like a lattice that lives in Rt for high t, is �dense�4, and has a
fast decoding function LatticeDecode. With a higher t, the dimensionality reduction is
more accurate. A �denser� lattice gives a sharper di�erence in collision probabilities of close
and far points.

3.3.2 Leech Lattice
In this section, we focus on a particular lattice in 24 dimensional space, the Leech Lat-
tice [Lee67]. We give numerical values for the ρ when we use the Leech Lattice in the
algorithm from Figure 3-6 with a speci�c decoder described below.

4A measure of �density� is, for example, the density of hypersphere packing induced by the lattice. The
density of hypersphere packing is the percent of the space that is covered by non-overlapping balls centered
at lattice points.
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Initialization of a hash function h ∈ H
1. If d > t, choose a random projection from d-dimensional space to t-dimensional space. The projection

is represented by a t × d matrix A, where each element Aij is distributed according to the normal
distribution N(0, 1) times a scaling factor of 1√

t
.

2. If d ≤ t, choose a random rotation in the t-dimensional space. The rotation is represented by the
matrix A, which is equal to the �rst d coordinates of an t× t orthonormal matrix.

3. Choose a random translation in the t-dimensional space. The translation is represented by a vector
T ∈Mt,1.

Computing h() on a point p ∈ Rd

1. Let x = A · p+ T .
2. Return LatticeDecode(x).

Figure 3-6: Algorithms for initializing an LSH function h and for computing h(p) for a point
p ∈ Rd.

The Leech Lattice has been studied extensively (see, e.g., [CS93, CS86, ABV+94, AB96])
and is known to be the lattice that gives the densest (lattice) hypersphere packing in 24
dimensions. Below, we denote the Leech Lattice by λ24 and call the corresponding decoding
function LatticeDecodeλ24(x).

Several e�cient decoders for the Leech Lattice are known (see, e.g., [ABV+94, AB96,
Var95]); the best of them require a few thousand �oating point operations to decode one
point. However, even faster decoders are known for the bounded-distance decoding problem.
A bounded-distance decoder guarantees to return the correct result only when the query
point x is su�ciently close to one of the lattice points; otherwise the decoder gives no guar-
antees. Note that a bounded-distance decoder yields an LSH function (albeit not necessarily
as good as the perfect decoder), as long as the decoder is deterministic.

We have investigated the bounded-distance decoder of [AB96]. Their implementation
uses at most 519 real operations per decoded point. Since their implementation decodes
only a �nite subset of the Leech Lattice, we have slightly modi�ed the implementation to
approximate the decoding of the entire Leech Lattice. We call this bounded-distance decoder
LatticeDecodeBλ24

(x).
For that decoder, we computed the values of the resulting collision probabilities (for the

case d > 24). The results are depicted in Table 3.1. The probabilities are computed using
Monte-Carlo simulation with 107 trials. Speci�cally, in a trial, we generate a random point p
and some other point q, such that p−q is drawn from a 24-dimensional Gaussian distribution,
scaled by 1√

24
times the radius. The points p and q collide i� LatticeDecodeBλ24

(p) =

LatticeDecodeBλ24
(q). Table 3.1 summarizes the estimated probabilities of collision for

di�erent values of radii (the con�dence intervals are computed with 95% accuracy). These
probabilities yield values for ρ that are summarized in Table 3.2. The table shows maximum
likelihood ρ and conservative ρ. The max likelihood ρ is the ratio of corresponding max
likelihood values of P1 and P2 (from the middle column). The conservative ρ is the ratio
of lowest estimate of P1 from the con�dence interval to the highest estimate of P2 in the
con�dence interval.

From the table, one can observe that the Leech Lattice o�ers a substantial improvement
over method from [DIIM04]. For example, for the approximation c = 2, we obtain an
exponent ρ = 0.36, whereas [DIIM04] obtains an exponent of 0.45. However, our exponent
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Radius Est. collision probability Con�dence interval
0.7 0.0853465 [0.0853409, 0.0853521]
0.8 0.0525858 [0.0525813, 0.0525903]
0.9 0.0311720 [0.0311685, 0.0311755]
1.0 0.0177896 [0.0177869, 0.0177923]
1.1 0.0097459 [0.0097439, 0.0097479]
1.2 0.0051508 [0.0051493, 0.0051523]
1.3 0.0026622 [0.0026611, 0.0026633]
1.4 0.0013332 [0.0013324, 0.0013340]
1.5 0.0006675 [0.0006670, 0.0006681]
1.6 0.0003269 [0.0003265, 0.0003273]
1.7 0.0001550 [0.0001547, 0.0001553]
1.8 0.0000771 [0.0000769, 0.0000773]
1.9 0.0000368 [0.0000366, 0.0000370]
2.0 0.0000156 [0.0000155, 0.0000157]

Table 3.1: Probabilities of collision of two points, for d > 24, under the hash function
described in Figure 3-6 with bounded-distance Leech Lattice decoder. The values were
obtained through Monte-Carlo simulation for 107 trials. Con�dence interval corresponds to
95% accuracy.

c Max likelihood of ρ Conservative ρ Radius R
1.5 0.5563 0.5565 1.2
2.0 0.3641 0.3643 1.0

Table 3.2: The values of ρ = logP1

logP2
corresponding to the collision probabilities in Table 3.1

(d > 24). Probabilities P1 and P2 are the collision probabilities corresponding to radii R
and cR respectively.

is still far from the desired exponent of 0.25.
For the case when d ≤ 24, the collision probabilities are summarized in Table 3.3. The

method for computing the probabilities is as before, except for the generation of the point
q. In this case, the vector q − p is a random vector of �xed length. The resulting values of
ρ are summarized in Table 3.4.

3.4 Near-linear Space
In this section we present a data structure for the c-NN problem achieving near-linear space
and dnO(1/c2) query time. Our goal is to prove the following theorem.

Theorem 3.4.1. There exists an algorithm solving the c-NN problem in the d-dimensional
Euclidean space that achieves dnO(1/c2) query time and Õ(nd) space and preprocessing time.

From a high-level, we obtain this data structure by plugging our new LSH function into
the algorithm of Panigrahy [Pan06]. Unlike the standard LSH scheme of [IM98] (described
in Section 3.1), which uses nρ independent hash tables, Panigrahy's algorithm uses only one
such hash table to store the data set D. The hash table is then probed by hashing not
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Radius Est. collision probability Con�dence interval
0.7 0.0744600 [0.0744548, 0.0744653]
0.8 0.0424745 [0.0424705, 0.0424786]
0.9 0.0223114 [0.0223084, 0.0223144]
1.0 0.0107606 [0.0107585, 0.0107627]
1.1 0.0046653 [0.0046639, 0.0046667]
1.2 0.0017847 [0.0017838, 0.0017856]
1.3 0.0005885 [0.0005880, 0.0005890]
1.4 0.0001602 [0.0001599, 0.0001605]
1.5 0.0000338 [0.0000337, 0.0000340]
1.6 0.0000073 [0.0000072, 0.0000074]
1.7 0.0000009 [0.0000008, 0.0000010]
1.8 0.0000000 [0.0000000, 0.0000001]

Table 3.3: Probabilities of collision of two points, for d ≤ 24, under the hash function
described in Figure 3-6 with bounded-distance Leech decoder. The values were obtained
through Monte-Carlo simulation for 107 trials. Con�dence interval corresponds to 95%
accuracy.

c Max likelihood of ρ Conservative ρ Radius R
1.5 0.4402 0.4405 1
2.0 0.2671 0.2674 0.8

Table 3.4: The values of ρ = logP1

logP2
corresponding to the collision probabilities in Table 3.1

(d ≤ 24). Probabilities P1 and P2 are the collision probabilities corresponding to radii R
and cR respectively.

just the query point q (as in Section 3.1) but by hashing several points chosen randomly
from the neighborhood of q. The intuition behind this approach is as follows. Let p∗ ∈ D
be a point within distance 1 from q, i.e., p∗ is a 1-NN. If a random LSH function causes
collision between p∗ and q with probability 1/nρ, then it is plausible that, with constant
probability5, a random hash function causes collision between p∗ and a �non-negligible� (say,
≈ 1/nρ) fraction of the points in the unit ball around q. In such case, it would su�ce to
pick ≈ nρ random points from the unit ball around q and probe them into the hash table.
Then we expect at least one of these random points to collide with p∗. Furthermore, any
point from the unit ball around q cannot get too close to a �far� point p from the dataset
by triangle inequality. Indeed, [Pan06] shows that, for the LSH family from [DIIM04], the
above condition is satis�ed (with a mild loss in parameters).

Our proof follows the above general intuition. However, in our case, converting this
intuition into a formal proof is more technical. One of the reasons is due to the fact that our
new LSH functions are more complex than the ones from [DIIM04], requiring us to extend
[Pan06]'s framework to a more general setting.

Our algorithm construction and proof of correctness is structured as follows. First, we
give an algorithm AG that is a generalization of the [Pan06]'s algorithm summarized above,

5In the actual proof, the probability is 1/ logO(1) n.
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and which works for a broad class of LSH families. Then, we discuss the parameters of this
general algorithm, and prove its correctness. Finally, we show how to combine this general
algorithm with our new LSH family from Section 3.2.1, and prove that the resulting query
time is dnO(1/c2).

Our generalized algorithm. Our algorithm AG is an extension of the Panigrahy's al-
gorithm from [Pan06], with the following important di�erences. For one, our probes are
not chosen directly from the ball around the query q. Rather, the probes are chosen in the
intermediary Rt space, between the random projection and the discretization step. This
modi�cation helps on several fronts. First of all, it signi�cantly simpli�es the analysis of
the equivalent of the statement that �large fraction of the ball around q intersects with
the bucket of p∗�. Second, the query algorithm becomes slightly faster since we bypass the
dimensionality reduction step in the hash function computation for the random probes.

The second di�erence from the [Pan06]'s algorithm is that our generalized algorithm
supports LSH hash functions with arbitrary discretization stages. In fact, we only require
the following condition on the hashing family: the family H is a composition of two compo-
nent families of hashing functions, F and H̃. We choose a random h ∈ H by setting it to be
h(x) = h̃(f(x)), where f and h̃ are chosen independently at random from families F and H̃
respectively. We assume that the functions f ∈ F map Rd into Rt, and the functions h̃ ∈ H̃
map Rt into Ω, a discrete (potentially in�nite) set. For example, this framework includes
both the LSH function from [DIIM04] as well as our new LSH function from Section 3.2.1.
Namely, the LSH function from Section 3.2.1 is h(p) = h̃(f(p)), where f ∈ F is the dimen-
sionality reduction step and h̃ ∈ H̃ is the �ideal� LSH function. Thus, in the case of our
LSH function, F is the set of dimensionality reduction functions f : Rd → Rt, and H̃ is the
set of �ideal� LSH functions h̃ : Rt → Ω.

We present our algorithm AG in Fig. 3-7. The algorithm AG is parametrized by values
k, ρ, and a probability distribution density function P∗(x).

Preprocessing:
1. Randomly pick a k-tuple F = (f1, f2, . . . fk) of functions fi ← F .
2. Randomly pick a k-tuple H̃ = (h̃1, h̃2, . . . h̃k) of functions h̃i ← H̃.
3. For all p ∈ D, store H̃(F (p)) =

“
h̃1(f1(p)), h̃2(f2(p)), . . . h̃k(fk(p))

”
in a single hash table.

Query q:
1. For each i = 1, 2, . . . , O(nρ):

2. Randomly pick Vi = (vi,1, vi,2, . . . vi,k), where each vi,j ∈ Rt is distributed according to the
distribution P∗.

3. Examine the points in the bucket H̃(F (q)+Vi) =
“
h̃1(f1(q) + vi,1), . . . h̃k(fk(q) + vi,k)

”
. If the

bucket contains some point p∗ at distance ‖q − p∗‖ ≤ c, return p∗ and stop.

Figure 3-7: Generalized algorithm AG for obtaining a near-linear space LSH algorithm. The
algorithm is parametrized by values k, ρ and a probability distribution P∗.

Parameters of the general algorithm AG. We now discuss the choice of the parameters
k, ρ, and distribution P∗(x), which govern the correctness and e�ciency of AG. We will
give precise requirements later, in Lemma 3.4.4.
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We start from P∗(x). As de�ned in preliminaries, Pf(q) will denote the probability
distribution of f(q) when f ∈ F . Our ideal goal is to de�ne P∗ = Pf(p∗)−f(q) where
p∗ ∈ D is at distance exactly 1 from q, i.e., it is a 1-NN from the dataset. However, note
that we do not know p∗ a priori, and thus, in general, we do not know the distribution
Pf(p∗)−f(q). Fortunately, we use a family F that automatically guarantees that Pf(p∗)−f(q)

is the exact same distribution for all p∗ ∈ B̄(q, 1) � abusing notation, we call this the
�spherical symmetry� property of P∗. One minor further complication is that a desired 1-
NN p∗ may be closer than at distance exactly 1. In this case we guess the distance ‖q− p∗‖
up to within a factor of, say, 1+ε by trying all the radii (1+ε)−j for 1 ≤ j ≤ O(ε−1 log log n).
Furthermore, we show that having only an approximation to ‖q − p∗‖ su�ces, as long as
we set P∗(x) to be a distribution that is statistically close to Pf(p∗)−f(q)(x) when p∗ is such
that ‖p∗ − q‖ ∈ [1− ε, 1].

The remaining parameters k and ρ are set as in [Pan06]. Speci�cally, we set k = logn
log 1/P2

,
where P2 is the probability of collision of two points at distance at least c, under the a
random hash function h ∈ H.

To specify the value of ρ, we need the following de�nition:

De�nition 3.4.2. Consider any hash function h̃ ∈ H̃, h̃ : Rt → U . For a probability
distribution function P∗ : Rt → [0, 1], the entropy of h̃ with respect to distribution P∗ is
de�ned to be the entropy of the discrete random variable h̃(v), where v is distributed according
to the distribution P∗(v). We denote this entropy by I(h̃(v) | h̃).

We set ρ = M
log 1/P2

, where M = Eh̃∈H̃
[
I(h̃(v) | h̃)

]
is the expected entropy of a random

function h̃ ∈ H̃.

Analysis of the general algorithm. We now proceed to proving the correctness and
performance guarantees of the general algorithm AG, only assuming some properties of
the LSH family (namely, via parameters P∗, k, ρ). We thus state a general lemma so that
designers of future LSH families do not have to reproduce the entire proof. Later in this
section, we will show how our new LSH family from Section 3.2.1 satis�es the required
properties, and thus conclude Theorem 3.4.1.

Before stating the main lemma for the general algorithm AG, we need to de�ne some
natural technical condition.

De�nition 3.4.3 (Translation invariance). Consider a family H̃ of functions h̃ : Rt → U .
A function h̃ ∈ H̃ induces an equivalence function ψh̃ : Rt×Rt → {0, 1}, where ψh̃(x, y) , 1
if h̃(x) = h̃(y) and ψh̃(x, y) , 0 if h̃(x) 6= h̃(y). We denote by {ψh̃(x, y)}h̃∈H̃ the distribution
of functions ψh̃ for h̃ chosen randomly from H̃.

We call H̃ translation invariant if, for any translation s ∈ Rt, the distribution of ψh̃(x, y)h̃∈H
is the same as the distribution of {ψh̃(x+ s, y + s)}h̃∈H̃.

One can view the equivalence function ψh̃ as de�ning the equivalence relation on points
in Rt, two points being equivalent i� they fall into the same bucket under h̃. Translation
invariance of H̃ then says that even if a random function h̃ is translated, we do not change
the distribution of equivalence relations on points induced by h̃.

The main correctness lemma follows.
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Lemma 3.4.4. Consider two families of functions F and H̃, where a function f ∈ F acts
from Rd to Rt and a function h̃ ∈ H̃ acts from Rt to U . Set k = logn

log 1/P2
and ρ = M

log 1/P2
,

where M = Eh̃∈H̃
[
I(h̃(v) | h̃)

]
. Suppose also the following properties hold:

1. The family H̃ is translation invariant.

2. P∗ is �spherically symmetric� in the sense that it is equal to Pf(p∗)−f(q) for each p∗ at
distance 1 from q. Also, there exists some ε > 0 such that, for every p∗ at distance
‖p∗ − q‖ ∈ [1 − ε, 1], the statistical distance between P∗ and Pf(p∗)−f(q) is at most
O(1/(k log2 n)).

3. For any q, pn, pf ∈ Rd such that ‖q−pn‖ = 1 and ‖q−pf‖ > c, there exists some point
pm with ‖q−pm‖ > c, such that the distribution of (f1(pn)− f1(q))−

(
f2(pf )− f2(q)

)
,

for f1, f2 ∈ F , has a pdf equal to Pf(pm)−f(q).

Then, the algorithm AG has the following guarantees:

• if there exists some p∗ ∈ D such that ‖q− p∗‖ ∈ [1− ε, 1], the algorithm AG will report
a c-NN, with probability at least Ω(1/ log2 n); and

• the expected number of points examined by the algorithm before stopping is O(nρ).

The proof of this lemma appears in Section 3.4.1.
A few remarks are in place. First, we note that even though the lemma guarantees

a probability of success of only Ω(1/ log2 n), we can boost this probability to a constant
by creating O(log2 n) parallel copies of the algorithm. In addition, we can eliminate the
assumption that the near neighbor p∗ is at distance ‖q − p∗‖ ∈ [1 − ε, 1] by guessing the
value ‖q − p∗‖ to within a factor of 1 + ε, and applying the algorithm AG for each guess.
Namely, we can rescale everything by (1 + ε)−j for each j ∈ {0, 1, . . . log1+ε logn} and run
the algorithm (note that, for an O(log n) approximation, we immediately have a near-linear
space algorithm by the basic algorithm from Section 3.1.1). Both of these modi�cations
introduce the space and time overhead of at most O(1

ε log3 n), which is subsumed by the
�nal dnO(1/c2) query time bound.

Algorithm AG with the new LSH family from Section 3.2.1. As mentioned before,
our new LSH family �ts precisely in the framework of the general algorithm AG. Speci�cally,
we identify the family F with the family of random dimensionality reductions from Rd to Rt,
and we identify H̃ with the family of �ideal� LSH functions in Rt described in Section 3.2.1.
Thus, our hope would be to apply the Lemma 3.4.4 from above for our families F , H̃,
and conclude that AG has query time of nO(1/c2). Indeed, we show below how to apply
Lemma 3.4.4 for our LSH family.

We need to prove two steps. First, we need to show that we satisfy the conditions of the
Lemma 3.4.4. Second, we need to prove that ρ = O(1/c2), thus concluding, by Lemma 3.4.4,
that the query time of the resulting algorithm is nO(1/c2).

We prove below that we satisfy all three conditions of Lemma 3.4.4.

1. We need to prove that the �ideal� LSH functions H̃ is translation invariant. Translation
invariance requires that, for any s ∈ Rt, the distribution of {ψh̃(z)(x, y)}h̃(z)∈H̃ is the
same as {ψh̃(z)(x+s, y+s)}h̃(z)∈H̃. Indeed, note that ψh̃(z)(x+s, y+s) = ψh̃(z+s)(x, y).
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Thus, the distribution {ψh̃(z)(x+ s, y+ s)}h̃(z)∈H̃ is the same as {ψh̃(z+s)(x, y)}h̃(z)∈H̃.
Furthermore, the distribution {ψh̃(z+s)(x, y)}h̃(z)∈H̃ is the same as {ψh̃(z)(x, y)}h̃(z)∈H̃
since our �ideal� LSH functions h(z) are de�ned by the positions of the grids Gtu which
themselves are shifted by a random vector.

2. The second property requires that P∗(x) is statistically close to Pf(p∗)−f(q)(x), for each
p∗ such that ‖q − p∗‖ ∈ [1− ε, 1]. Since f ∈ F is a random dimensionality reduction,
we set P∗ is set to be a t-dimensional Gaussian distribution, i.e., P∗ , N(0, 1/

√
t)t.

We now prove the statistical distance property for ε = O(1/kt log2 n). Notice that, for
p∗ such that ‖q − p∗‖ = δ ∈ [1− ε, 1], distribution Pf(p∗)−f(q) is equal to N(0, δ/

√
t)t.

We bound the statistical distance TV(Pf(p∗)−f(q),P∗) as follows:

TV(Pf(p∗)−f(q),P
∗) =

∫

Rt

max

{
0,

∏

i

√
t√

2πδ
e−(xi

√
t/δ)2/2 −

∏

i

√
t√

2π
e−(xi

√
t)2/2

}∏

i

dxi

=
∫

Rt

∏

i

√
t√

2π
e−(xi

√
t)2/2 max

{
0,

∏

i

1
δ

exp
[
x2
i t(1− 1

δ2
)/2

]− 1

}∏

i

dxi

≤
∫

Rt

∏

i

√
t√

2π
e−(xi

√
t)2/2 max

{
0,

1
δt
· 1− 1

} ∏

i

dxi

=
1
δt
− 1

≤ O(1/k log2 n).

3. Fix some points q, pn, and pf ∈ Rd satisfying ‖q − pn‖ = 1 and ‖q − pf‖ ≥
c. We need to show that the distribution of (f1(pn)− f1(q)) −

(
f2(pf )− f2(q)

)
for

f1, f2 ∈ F has a pdf equal to Pf(pm)−f(q) for some pm 6∈ B(q, c). Indeed, if we let
δ = ‖q − pf‖, then f1(pn) − f1(q) is distributed as (N(0, 1/

√
t))t, and f2(pf ) − f2(q)

is distributed as (N(0, δ/
√
t))t. Thus, f1(pn)− f1(q)− (f2(pf )− f2(q)) is distributed

as (N(0,
√

1 + δ2/
√
t))t by Fact 2.4.5. Now, choose pm to be some �xed point at

distance
√

1 + δ2 > δ > c from q, and note that f(pm) − f(q) is also distributed as
(N(0,

√
1 + δ2/

√
t))t.

Complexity analysis. Finally, we analyze the complexity of the algorithm. First, we need
to show that ρ = O(1/c2). We set w =

√
t/2. In that case, we can show that P2 ≤ e−Ω(c2).

Indeed, using the calculation from Eqn. (3.3) with ∆′ ≥ c(1− t−1/4) and f = exp
[−Ω(

√
t)

]
,

we have that

P2 ≤ 2 exp
[
− t

2(c(1− t−1/4)/2w)2
]

+ f ≤ 3 exp
[−c2/3]

,

and then log 1/P2 ≥ Ω(c2).
It just remains to show that M = Eh̃∈H̃

[
I(h̃(v) | h̃)

]
= O(1). Then we can conclude

that ρ = M
log 1/P2

≤ K/c2 for some constant K. We will prove the desired bound on M in
the following lemma.
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Lemma 3.4.5. Let h̃ ∈ H̃. Let w be such that 1 ≤ w ≤ √t. Then Eh̃
[
I(h̃(v) | h̃)

]
≤

O

((√
t
w

)3
exp

[
t

2w2

])
, where v is chosen according to a t-dimensional Gaussian distribution

(N(0, 1/
√
t))t.

To �nish the proof of Theorem 3.4.1, it remains to prove Lemmas 3.4.4 and 3.4.5, which
we do in the following two sections.

3.4.1 Correctness of the general algorithm: proof of Lemma 3.4.4
The proof is organized in four parts. First, we show that the behavior of algorithm AG
is equivalent to the behavior of a slightly di�erent algorithm BG, which combines the
preprocessing and the query stages and is easier to analyze. Second, we prove that, if
P∗ = Pf(p∗)−f(q) where p∗ is at distance exactly 1 from q, the algorithm BG returns correct
answer with a probability at least Ω(1/ log2 n). Third, we prove that the success probability
does not decrease by too much if P∗ is only statistically close to Pf(p∗)−f(q). Finally, we
prove that BG examines at most O(nρ) points in expectation.

We give the modi�ed algorithm BG in Fig. 3-8, which we show to be equivalent to the
algorithm AG.

1. Randomly pick a k-tuple F ′ = (f ′1, f
′
2, . . . f

′
k) of functions f ′i ← F .

2. Randomly pick a k-tuple H̃ ′ = (h̃′1, h̃
′
2, . . . h̃

′
k) of functions h̃′i ← H̃.

3. Let ΨH̃′ = (ψh′1 , ψh′2 , . . . ψh′
k
) where h′i = h̃′i ◦ f ′i .

4. For each i = 1, 2, . . . , O(nρ):

5. Randomly pick V ′i = (v′i,1, v
′
i,2, . . . v

′
i,k), where each v′i,j ∈ Rt is distributed according to the

distribution P∗.
6. Examine the points p ∈ D such that ΨH̃′(F

′(p)− F ′(q), V ′i ) = 1. If some examined point p∗ is
at distance ‖q − p∗‖ ≤ c, return p∗ and stop.

Figure 3-8: The modi�ed algorithm BG, equivalent to the algorithm AG from Fig. 3-7,
assuming the conditions of Lemma 3.4.4.

Equivalence of AG and BG. We show that the algorithms AG and BG produce exactly
the same answers if: F = F ′, Vi = V ′i for all probes i, and ΨH̃(F (p), F (q)+Vi) = ΨH̃′(F (p)−
F (q), Vi) for all q, p, F and i. To understand these conditions, note that the algorithm AG,
in query step 3, examines the points p ∈ D such that ΨH̃(F (p), F (q) + V ) = 1. Thus, if
ΨH̃(F (p), F (q)+V ) = ΨH̃′(F (p)−F (q), V ), then AG and BG examine exactly the same set
of points.

Now recall that the family H̃ is translation invariant. Therefore the tuples 〈F, {Vi},ΨH̃(x, y)〉
and 〈F ′, {V ′i }i,ΨH̃′(x − F ′(q), y − F ′(q))〉 have the same distributions. Thus, AG and BG
have exactly the same behavior, and it su�ces to analyze the algorithm BG only.

Before continuing with the analysis of the algorithm BG, we summarize our notation in
Table 3.5 for the ease of reference.

Success probability of BG. When discussing the �success probability of BG�, we mean
the following condition. Suppose there is some p∗ ∈ D such that ‖q − p∗‖ ∈ [1 − ε, 1]. We
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Notation De�nition
F ′ = (f ′1, . . . f

′
k) a hash function chosen from the family Fk

H̃ ′ = (h′1, . . . h
′
k) a hash function chosen from the family H̃k

ΨH̃′(x, y) the equivalence function of H̃ ′: equal to 1 if H̃ ′(x) = H̃ ′(y), and 0 otherwise
V ′i = (v′i,1, . . . v

′
i,k) the ith probe, chosen from the distribution (P∗)k

q the query point
p∗ the desired near neighbor, satisfying ‖q − p∗‖ ∈ [1− ε, 1]
pn a point such that ‖q − pn‖ = 1 (see precondition 3)
pf a point from D such that ‖q − pf‖ > c (see precondition 3)
pm a point at distance at least c from q (see precondition 3)
M = I(H̃ ′(V ′) | H̃ ′) the entropy of the partition induced by H̃ ′(V ′), for V ′ ← (P∗)k, for �xed H̃ ′
Pf(p)−f(q) the distribution of f(p)− f(q) when f ← F

Table 3.5: Notation used in the proof of Lemma 3.4.4.

say BG succeeds if ΨH̃′(F
′(p∗)− F ′(q), V ′i ) = 1 for at least one probe V ′i � in this case, the

algorithm guarantees to return some c-NN. Note that if no such p∗ ∈ D exists, we do not
require anything from BG, except that BG examines at most O(nρ) points in expectation.
Thus, for discussing the success probability of BG, we assume that p∗ ∈ D.

We now prove that the algorithm BG succeeds with probability at least Ω(1/ log2 n). At
the moment, we assume that P∗ = Pf(p∗)−f(q), where p∗ ∈ D is at distance ‖q−p∗‖ ∈ [1−ε, 1].
We will remove this assumption later. The claim follows from Lemma 2 in [Pan06], which
states the following:

Lemma 3.4.6 ([Pan06]). Suppose we are given a discrete probability space Ω with entropy
I, and a �reference� sample r∗ drawn from Ω. If we draw γ = O(2I) additional samples
(probes) r1, . . . rγ from Ω, then r∗ = ri for some i ∈ [γ] with probability at least Ω(1/I).

We apply this lemma in the following setting: the sample space is the partition induced
by the function H̃ ′, the reference sample is r∗ = H̃ ′(F ′(p∗)−F ′(q)), whereas the additional
samples are ri = H̃ ′(V ′i ), for i ∈ {1, . . . O(nρ)}. Furthermore, if r∗ = ri for some probe i ∈
{1, . . . O(nρ)}, then H̃ ′(F ′(p∗)−F ′(q)) = H̃ ′(V ′i ), implying that ΨH̃′(F

′(p∗)−F ′(q), V ′i ) = 1,
i.e., that the algorithm BG succeeds. Note that, in this setting, the entropy is I = I(H̃ ′(V ′) |
H̃ ′), i.e., the entropy of the variable H̃ ′(V ′) when V ′ is drawn from (P∗)k = P∗×P∗× . . .P∗,
assuming a �xed H̃ ′.

We note that the lemma has a relatively natural intuition behind it. Speci�cally, if the
entropy is very small � zero in the extreme � then there is only one bucket. This bucket
contains the desired point p∗, and thus we need only a few probes to �nd the bucket of
p∗. On the other hand, if the entropy is large, as given by uniform distribution on k = 2I

buckets, then we would need O(k) probes to hit one particular bucket, which contains the
desired p∗.

To use the Lemma 3.4.6 in our context, we just need to show that BG makes at least
γ probes, i.e., γ = O(2I) ≤ O(nρ), and then we can use the lemma to obtain a lower
bound on the success probability of BG. While we cannot prove that γ ≤ O(nρ) always,
we show it happens with good enough probability over the choice of H̃ ′. To prove this, we
compute an upper bound for I = I(H̃ ′(V ′) | H̃ ′). By Markov's inequality, I(H̃ ′(V ′) | H̃ ′) ≤
(1 + 1/ logn)EH̃′∈H̃

[
I(H̃ ′(V ′) | H̃ ′)

]
with probability at least 1/ logn. Furthermore, note
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that

EH̃′
[
I(H̃ ′(V ′) | H̃ ′)

]
≤ EH̃′




k∑

j=1

I(h̃′j(v
′
j) | h̃′j)


 = k · Eh̃∈H̃

[
I(h̃(v) | h̃)

]
,

since each Eh̃′j
[
I(h̃′j(v

′
j) | h̃′j)

]
is the expected entropy of a function h̃ ∈ H̃ with respect to P∗.

Thus, with probability at least 1/ logn, we have that I ≤ (1+1/ logn)·kEh̃∈H̃
[
I(h̃(v) | h̃)

]
=

(1 + 1/ log n)kM , where M = Eh̃∈H̃
[
I(h̃(v) | h̃)

]
. Replacing k = logn

log 1/p2
, we obtain

γ = O(2I) = O

(
2(1+1/ logn)· log n

log 1/P2
M

)
= O(n

M
log 1/P2 ) = O(nρ).

Thus, with probability at least 1/ logn, the algorithm chooses a tuple H̃ ′ for which
γ ≤ O(nρ). Conditioned on such a choice of H̃ ′, by Lemma 3.4.6, with probability Ω(1/I) =
Ω(1/ logn), at least one of the O(nρ) probes ri equals to r∗. The total success probability
of BG becomes 1/ log n · Ω(1/ log n) = Ω(1/ log2 n).

Removing the assumption on distribution P∗. In the next step we remove the as-
sumption that P∗ = Pf(p∗)−f(q), and show that the algorithm BG maintains a success proba-
bility of Ω(1/ log2 n) even if we assume only that TV(P∗,Pf(p∗)−f(q)) ≤ O(1/k log2 n). This
follows from the standard fact on statistical distance, namely Fact 2.4.1. Speci�cally, con-
sider a new algorithm, B′G, which di�ers from BG in step 6, where it checks only whether
ΨH̃′(F

′(p∗) − F ′(q), V ′i ) = 1 for p∗, instead of doing that for all points p ∈ D. Note that
this modi�cation does not decrease the success probability of the algorithm. Then, we can
view B′G as a randomized algorithm on the input x = F ′(p∗) − F ′(q), with H̃ ′ and V ′i
being the random choices of B′G. B′G's input x = F ′(p∗) − F ′(q) is drawn from distribu-
tion (Pf(p∗)−f(q))k. As we have shown above, if we draw the input x from the distribution
(Pf(p∗)−f(q))k, the success probability of B′G is at least Ω(1/ log2 n). Thus, by Fact 2.4.1,
if x is drawn from P∗ instead, then the success probability of B′G(x) is at least Ω(1/ log2 n)−
TV((P∗)k, (Pf(p∗)−f(q))k). It just remains to show that TV((P∗)k, (Pf(p∗)−f(q))k) < O(1/ log2 n).

Indeed TV((P∗)k, (Pf(p∗)−f(q))k) ≤ O(1/ log2 n) follows from condition (2) of the Lemma 3.4.4
and the triangle inequality on the statistical distance (see Fact 2.4.2):

TV((P∗)k, (Pf(p∗)−f(q))
k) ≤ k · TV(P∗,Pf(p∗)−f(q)) = O(1/ log2 n).

Running time of BG. Finally, we need to argue that the algorithm BG examines O(nρ)
points in expectation. Note that we need only to consider the �far� points pf ∈ D at distance
‖q − pf‖ > c, since once we encounter a point at distance ≤ c, we return it. To prove an
upper bound on the expected number of examined points, it is su�cient to prove that, for
a probe V ′i , the condition ΨH̃′(F

′(pf ) − F ′(q), V ′i ) = 1 is satis�ed by only O(1) far points
pf ∈ D in expectation. Indeed, �x a far point pf . Also, below we assume F1, F2 are drawn
from Fk, and we write x ∼ y to mean that random variables x and y have the same pdfs.
We have the following equality of probability of distributions, using conditions (2) and (3)
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of Lemma 3.4.4:

ΨH̃′(F
′(pf )− F ′(q), V ′i ) ∼ ΨH̃′(F

′(pf )− F ′(q), F1(pn)− F1(q))
∼ ΨH̃′(F

′(pf )− F ′(q)− (F1(pn)− F1(q)) + F1(pn)− F1(q), F1(pn)− F1(q))
∼ ΨH̃′(F2(pm)− F2(q) + F1(pn)− F1(q), F1(pn)− F1(q))
∼ ΨH̃′(F2(pm)− F2(q) + F1(pn)− F1(q), F2(q)− F2(q) + F1(pn)− F1(q)).

Furthermore, by translation invariance of H̃, for s = −F2(q) + F1(p†) − F1(q), the
distribution of the last expression is equal to the distribution of ΨH̃′(F2(pm), F2(q)), which
is the probability of collision of q and pm under random LSH function H̃ ′ ◦F2 ←

(
H̃ ◦ F

)k
,

where pm satis�es ‖q− pm‖ > c. The probability of collision of pm and q under H̃ ′ ◦F2 is at
most P k2 by the de�nition of P2. Thus, the probability of examining a point pf is at most
P k2 = 1/n by the de�nition of k. Concluding, the expected number of examined points for
one probe V ′i is at most P k2 · 1/n = 1. Over O(nρ) probes, we examine an expected of O(nρ)
far points pf ∈ D.

3.4.2 Entropy bound: proof of Lemma 3.4.5
Let h̃ ∈ H̃ be an �ideal� LSH function h̃ as described in Section 3.2.1, with some parameters
t and w. Recall that the �ideal� LSH function h̃ ∈ H̃ is de�ned by grids Gtu, u ∈ [Ut], where
Gtu = Gt + su, su ∈ [0, 4w]t, is a randomly shifted regular grid of balls of radius w.

We call I(h̃) = I(h̃(v) | h̃) the entropy of random variable h̃(v), where v is distributed
as a t-dimensional Gaussian distribution. One LSH function h̃ divides the probability space
of v into some number of �cells,� and the probability masses of these cells de�ne the entropy
I(h̃). We prove below that the expected entropy Eh̃

[
I(h̃)

]
= O

((√
t
w

)3
exp

[
t

2w2

])
.

We separate all balls de�ning h̃ into two groups: far balls with their center outside
B(0t, 2w), and close balls with center inside B(0t, 2w). Note that most of the probability
mass of v is inside B(0t, 2w), and thus we expect most of the entropy contribution to come
from the close balls.

Indeed, we �rst show that the entropy contribution from far balls is exponentially small
in t. For an integer j ≥ 2, consider the balls with centers inside the spherical shell Rj =
B(0t, jw + w) \ B(0t, jw). There are less than (j + 1)t such balls from a single grid, and
thus there are at most (j + 1)t · Ut = 2O(t log jt) balls in Rj in total. Since each ball de�nes
at most one cell, there are at most Nj = 2O(t log jt) cells de�ned by these balls. But these
balls contain probability mass smaller than Prv[‖v‖ ≥ (j − 1)w], which is bounded by
Prv[‖v‖ ≥ (j− 1)w] ≤ πj = exp [−Ω(twj)], by Fact 2.3.3. Thus, the entropy contribution of
the balls in the shellRj is bounded by πj ·lnNj/πj = exp [−Ω(tjw)]. Finally, the contribution
of the balls in all the shells R2, R3, . . . is bounded by

∑
j≥2 exp [−Ω(tjw)] ≤ exp [−Ω(t)].

We now bound the entropy contribution of close balls. We denote this contribution
by I ′(h̃). Let B1 be the �rst ball with center inside B(0t, 2w), B2 the second ball inside
B(0t, 2w), etc. Note that no two balls Bi and Bj , i 6= j, come from the same grid, and, thus,
the positions of these balls are independent. Also, let fi be the probability of v belonging to
ball Bi and not to any of the previous balls (including the far balls). Let PFi be the union
of all far balls that appear before ball Bi. Then

fi = Prv[v ∈ Bi \B1 \ · · · \Bi−1 \ PFi}].
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Now I ′(h̃) is the entropy of a sample space with probabilities f1, f2, . . . , i.e., I(h̃) =∑
i≥1 fi ln(1/fi). Thus, the expectation of I ′(h̃) is

Eh̃
[
I ′(h̃)

]
= Eh̃

[∑
i≥1 fi ln(1/fi)

]

=
∑

i≥1 Eh̃ [fi ln(1/fi)]

Our approach is to compute, for each i separately, the contribution of the ball i to the
entropy, Eh̃ [fi ln 1/fi]. The heart of the matter is the following bound.
Proposition 3.4.7. The expected contribution of the ball Bi is

Eh̃ [fi ln 1/fi] ≤ O
((√

t

w

)3

exp
[
t

2w2

])
· 2−tFi ln 2/Fi,

where Fi = exp
[−(i− 1)2−t

]
.

Proof. We start by noting that we can compute Eh̃ [fi ln 1/fi] as follows:

Eh̃ [fi ln 1/fi] = EB1,B2,...Bi,PFi [fi ln(1/fi)]
= EBi

[
EB1,B2,...Bi−1,PFi [fi ln(1/fi)]

]

≤ EBi

[
EB1,B2,...Bi−1,PFi [fi] ln

1
EB1,B2,...Bi−1,PFi [fi]

]
(3.5)

where the last inequality follows from Fact 2.4.6.
In other words, we estimate EB1,B2,...Bi−1,PFi [fi] assuming a �xed Bi, and then average

it out over the random choice of the position of Bi. The quantity EB1,B2,...Bi−1,PFi [fi] is
composed of two factors. The �rst factor corresponds to the fraction of v's probability mass
cut by Bi, i.e., Prv[v ∈ Bi]. The second factor corresponds to the expected amount of
v's probability mass left uncovered by the previous balls, B1, . . . Bi−1, PFi, for which we
show an upper bounded of Fi = exp

[−(i− 1)2−t
]
. We formalize this intuition below. We

concentrate only on the balls Bi that are not too close to the origin, since, as we show later,
the balls Bi close to the origin capture too little mass and have a negligible contribution.
Formally, for balls Bi that are not too close to the origin, we show the following.
Fact 3.4.8. Suppose Bi is at distance u from the origin, where u ≥ w. Then EB1,B2,...Bi−1,PFi [fi] ≤
exp

[−t(u− w)2/2
] · Fi, where Fi = exp

[−(i− 1)2−t
]
.

Proof. Denoting by χ[E] the indicator variable of an event E, we have

EB1,B2,...Bi−1,PFi [fi] =
∫

x∈Bi

P∗(x)EB1...Bi−1,PFi [χ[x 6∈ B1 ∪ · · · ∪Bi−1 ∪ PFi]]dx

≤
∫

x∈Bi

P∗(x)dx ·
(

1− Volt(w)
Volt(2w)

)i−1

=
∫

x∈Bi

P∗(x)dx · (1− 2−t
)i−1

≤ Fi ·
∫

x∈Bi

P∗(x)dx

We now bound
∫
x∈Bi

P∗(x)dx when Bi's center is at a distance u ≥ w from the origin.
First, rotate the t-dimensional space so that Bi is centered at (u, 0, . . . , 0). Let Y be a
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random variable drawn from P ∗, i.e., the t-dimensional Gaussian distribution. If x ∈ Bi,
then it must be the case that the �rst coordinate of x is greater than u−w. Thus we obtain:

∫

x∈Bi

P∗(x)dx ≤
∫ ∞
y=u−w

√
t√

2π
exp

[−y2 · t/2]
dy

= exp
[−t(u− w)2/2

] ·
∫ ∞
y=0

1√
2π

exp
[
−y2/2− y

√
t(u− w)

]
dy

≤ exp
[−t(u− w)2/2

]
.

We thus conclude the proof of Fact 3.4.8.

We state two more useful facts.

Fact 3.4.9. For any 0 ≤ x ≤ y ≤ 1, x ln 1/x ≤ y ln 2/y.

Fact 3.4.10. There exists some constant C such that for any y0 ≥ 1, we have
∫ ∞

0
exp

[−(y − y0)2/2
] · y2dy ≤ Cy2

0.

Proof. Since 1√
2π
e−x2/2 is the Gaussian distribution with variance one, we have that

∫∞
−∞

1√
2π
e−x2/2dx =∫∞

−∞
1√
2π
e−x2/2x2dx = 1. Thus,

∫ ∞
0

exp
[−(y − y0)2/2

] · y2dy =
∫ ∞
−y0

exp
[−y2/2

] · (y + y0)2dy

≤
∫ y0

−y0
exp

[−y2/2
] · 4y2

0dy +
∫ ∞
y0

exp
[−y2/2

] · 4y2dy

≤ 4
√

2πy2
0 + 4

√
2π

≤ 8
√

2πy2
0.

We can now proceed to computing Eh̃ [fi ln 1/fi], which we do by integrating over all
possible positions of Bi. By Eqn. (3.5), we have

Eh̃
[
fi ln 1

fi

]
≤ EBi

[
EB1,...Bi−1,PFi [fi] ln

1
EB1,...Bi−1,PFi [fi]

]

=
∫ 2w

u=0

Surt(u)

Volt(2w)
· EB1,...Bi−1,PFi [fi] ln

1
EB1,...Bi−1,PFi [fi]

· du

= Li +
∫ 2w

u=w

Surt(u)

Volt(2w)
· EB1,...Bi−1,PFi [fi] ln

1
EB1,...Bi−1,PFi [fi]

· du (3.6)

where Li =
∫ w
u=0

Surt(u)

Volt(2w)
· EB1,...Bi−1,PFi [fi] ln 1

EB1,...Bi−1,PFi
[fi]
· du is the contribution of
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Bi's close to the origin, and is a negligible term, as we show later. We have:

Eh̃
[
fi ln 1

fi

]
− Li ≤

∫ 2w

u=w

Surt(u)

Volt(2w)
· EB1,...Bi−1,PFi [fi] ln 1

EB1,...Bi−1,PFi
[fi]
· du (3.7)

≤
2w∫

u=w

t
2w ( u

2w )t−1 · exp
[−(u− w)2 t2

]
Fi · ln 2 exp[(u−w)2t/2]

Fi
du (3.8)

≤ t
w2t ·

w∫

y=0

(w+y
w )t · exp

[−y2 t
2

]
Fi · ln 2 exp[y2t/2]

Fi
· dy (3.9)

≤ t
w2t ·

w∫

y=0

exp
[ y
w t− y2 t

2

]
Fi · ln 2 exp[y2t/2]

Fi
· dy

≤ t
w2t ·

∞∫

y=0

exp
[− t

2(y − 1
w )2 + t

2w2

]
Fi · (y

2t
2 + 1 + ln 1/Fi) · dy

≤
√
t

w2t e
t/2w2

Fi

∞∫

z=0

exp

[
−(z −

√
t
w )2

2

](
z2

2 + 1 + ln 1
Fi

)
dz (3.10)

where Eqn. (3.7) uses Eqn. (3.6), Eqn. (3.8) uses Fact 3.4.8 and Fact 3.4.9, and we make
substitution y = u− w in Eqn. (3.9) and substitution z =

√
ty in Eqn. (3.10).

Using Fact 3.4.10 for y0 =
√
t/w ≥ 1, we can further bound Eh̃ [fi ln 1/fi] as follows

Eh̃ [fi ln 1/fi]− Li ≤
√
t

w
2−t exp

[
t

2w2

]
Fi ·

(
O

(
(
√
t
w )2

)
+O(1) +O(ln 1/Fi)

)

≤ O

((√
t

w

)3

exp
[
t

2w2

])
· 2−tFi ln 2/Fi. (3.11)

Also, using Fact 3.4.9 and the fact that EB1,...Bi−1,PFi [fi] ≤ Fi, the value of Li is

Li =
∫ w

v=0

Surt(v)
Volt(2w)

· EB1,...Bi−1,PFi [fi] ln
1

EB1,...Bi−1,PFi [fi]
· dv

≤ Volt(w)
Volt(2w)

· Fi ln 2/Fi

≤ 2−tFi ln 2/Fi. (3.12)

It remains to plug-in Eqn. (3.11) and Eqn. (3.12) into Eqn. (3.6), and we obtain Propo-
sition 3.4.7.

To compute the entire value I ′(h̃), we sum the contributions Eh̃ [fi ln 1/fi] over all i ≥ 1
using Proposition 3.4.7:

Eh̃
[
I ′(h̃)

]
≤ O

((√
t
w

)3
exp

[
t

2w2

]) · 2−t ∑i≥1 Fi ln 2/Fi.

65



It remains to prove that 2−t
∑

i≥1 Fi ln 1/Fi ≤ O(1), where Fi = exp
[−(i− 1)2−t

]
:

2−t
∑

i≥1

Fi ln 2/Fi = 2−t
∑

i≥1

exp
[−(i− 1)2−t

] · (1 + (i− 1)2−t
)

≤ 2−t ·
∑

j≥0

exp [−j + 1] · (2t + 2tj)

≤ O(1),

where j = d(i− 1)2−te.
We can �nally conclude that the entropy contribution I ′(h̃) of the balls with centers inside

B(0t, 2w) is at most O(1). Thus, the total entropy I(h̃) is at most O(1)+exp [−Ω(t)] ≤ O(1).
This �nishes the proof of Lemma 3.4.5.

3.5 Bibliographic Notes
By now, several LSH families have been discovered. We brie�y survey them in the section
below. After that, we also describe some further work related to the NN problem.

3.5.1 LSH Library
For each LSH family, we present the procedure of choosing a random function from the
respective LSH family, as well as its locality-sensitive properties.

Hamming distance. For binary vectors from {0, 1}d, Indyk and Motwani [IM98] pro-
pose LSH function hi(p) = pi where i ∈ {1, . . . d} is a randomly chosen index (the sample
LSH family from Section 3.1). They prove that the exponent ρ is 1/c in this case.

It can be seen that the above family applies directly to M -ary vectors (that is, with co-
ordinates in {1 . . .M}) under the Hamming distance. Moreover, a simple reduction enables
to extend this family of functions toM -ary vectors under the `1 distance [LLR94]. Consider
any point p from {1 . . .M}d. The reduction proceeds by computing a binary string Unary(p)
obtained by replacing each coordinate pi by a sequence of pi ones followed by M − pi zeros.
It is easy to see that for any two M -ary vectors p and q, the Hamming distance between
Unary(p) and Unary(q) equals to the `1 distance between p and q. Unfortunately, this
reduction is e�cient only if M is relatively small.

`1 distance. A more direct LSH family for Rd under the `1 distance is described
in [AI06a, And05]. Fix a real w À R, and impose a randomly shifted grid with cells of width
w; each cell de�nes a bucket. More speci�cally, pick random reals s1, s2, . . . sd ∈ [0, w), and
de�ne hs1,...sd

(x) = (b(x1 − s1)/wc, . . . , b(xd − sd)/wc). The resulting exponent is equal to
ρ = 1/c+O(R/w).

`p distance. For the Euclidean space, [DIIM04] propose the following LSH family. Pick
a random projection of Rd onto a 1-dimensional line, and chop the line into segments of
length w, shifted by a random value b ∈ [0, w). Formally, hr,b(x) = (b(r · x + b)/wc, where
the projection vector r ∈ Rd is constructed by picking each coordinate of r from the Gaussian
distribution. The exponent ρ drops strictly below 1/c for some (carefully chosen) �nite value
of w. This is the family used in the E2LSH package [AI05].

A generalization of this approach to `p norms for any p ∈ [0, 2) is possible as well; this
is done by picking the vector r from a so-called p-stable distribution. Details can be found
in [DIIM04].
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Jaccard. To measure similarity between two sets A,B ⊂ U (containing, say, words from
two documents), the authors of [Bro97, BGMZ97] utilize the Jaccard coe�cient. The Jaccard
coe�cient is de�ned as s(A,B) = |A∩B|

|A∪B| . Unlike the Hamming distance, Jaccard coe�cient is
a similarity measure: higher values of Jaccard coe�cient indicate higher similarity of the sets.
One can obtain the corresponding distance measure by taking d(A,B) = 1 − s(A,B). For
this measure, [Bro97, BGMZ97] propose the following LSH family, called min-hash. Pick a
random permutation π on the ground universe U . Then, de�ne hπ(A) = min{π(a) | a ∈ A}.
It is not hard to prove that the probability of collision Prπ[hπ(A) = hπ(B)] = s(A,B).
See [BCFM00] for further theoretical developments related to such hash functions.

Arccos. For vectors p, q ∈ Rd, consider the distance measure that is the angle between
the two vectors, θ(p, q) = arccos

(
p·q
‖p‖·‖q‖

)
. For this distance measure, Charikar (inspired

by [GW95]) de�nes the following LSH family [Cha02]. Pick a random unit-length vector
u ∈ Rd, and de�ne hu(p) = sign(u · p). The hash function can also be viewed as partitioning
the space into two half-spaces by a randomly chosen hyperplane. Here, the probability of
collision is Pru[hu(p) = hu(q)] = 1− θ(p, q)/π.

`2 distance on a sphere. Terasawa and Tanaka [TT07] propose an LSH algorithm
speci�cally designed for points that are on a unit hypersphere in the Euclidean space. The
idea is to consider a regular polytope, orthoplex for example, inscribed into the hypersphere
and rotated at random. The hash function then maps a point on the hypersphere into the
closest polytope vertex lying on the hypersphere. Thus, the buckets of the hash function are
the Voronoi cells of the polytope vertices lying on the hypersphere. [TT07] obtain exponent
ρ that improves over [DIIM04] and the Leech lattice approach described in Section 3.3.2 (for
general dimension d > 24).

3.5.2 Other related work
We also give a brief overview of prior work in the spirit of the algorithms mentioned in this
chapter. Some of the papers considered a closely related problem of �nding all �close� pairs
of points in a data set. For simplicity, we translate them into the near neighbor framework,
since they can be solved by performing essentially n separate near neighbor queries.

Hamming distance. Several papers investigated multi-index hashing-based algorithms
for retrieving similar pairs of vectors with respect to the Hamming distance. Typically, the
hash functions were projecting the vectors on some subset of the coordinates {1 . . . d}, as in
the example from earlier section. In some papers [PRR95, GPY94] the authors considered
the probabilistic model where the data points are chosen uniformly at random, and the
query point is a �random� point �close� to one of the points in the data set. A di�erent
approach [KWZ95] is to assume that the data set is arbitrary, but almost all points are
far from the query point. Finally, the paper [CR93] proposed an algorithm which did not
make any assumption on the input. The analysis of the algorithm was akin to the analysis
sketched at the end of Section 3.1.1: the parameters k and L were chosen to achieve desired
level of sensitivity and accuracy.

We also note that, recently, [Dub08] achieved an interesting bound for a probabilistic
model of the Hamming space. That algorithm (for the �closest pair� problem) achieves an
exponent of ρ = 1

2c−1 . We note that the algorithm is somewhat similar to the �ball parti-
tioning� method we utilize in Section 3.2.1, although some details are di�erent. Dubiner's
exponent ρ matches the lower bound of [MNP06] for the Hamming distance at c→∞.

Set intersection measure. To measure the similarity between two sets A and B,
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the authors of [Bro97, BGMZ97] considered the Jaccard coe�cient s(A,B), proposing a
family of hash functions h(A) such that Pr[h(A) = h(B)] = s(A,B) (presented in detail in
Section 3.5.1). Their main motivation was to construct short similarity-preserving �sketches�
of sets, obtained by mapping each set A to a sequence 〈h1(A), ..., hk(A)〉. In Section 5.3
of their paper they brie�y mention an algorithm similar to Strategy 2 described at the end
of the Section 3.1.1. One of the di�erences is that, in their approach, the functions hi are
sampled without replacement, which made it more di�cult to handle small sets.
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Chapter 4

External Applications of LSH

In the previous chapter, we have shown how the Locality-Sensitive Hashing (LSH) scheme
leads to e�cient NN algorithms under the Hamming and Euclidean spaces. We now give
indication of a broader applicability of the LSH scheme, beyond the NN application. In
particular, in this chapter we show how LSH functions help for the problem of approximating
kernel spaces, which may also be seen as dimensionality reduction in (implicit) kernel spaces.

Below, we �rst introduce and discuss the problem of approximating the kernel spaces,
and then show how LSH leads to some e�cient solutions. The results from this chapter have
previously appeared in [AI08a].

4.1 Approximating Kernel Spaces
Kernel functions are a fundamental tool for learning a non-linear classi�er. For example,
they form a key component of Support Vector Machines (SVM). A kernel function de�nes
a scalar product in a high-dimensional Euclidean space. Alternatively, it can be viewed as
a lifting of the data space S into a new feature space, called the kernel space K ⊂ L2. The
lifting enables performing complex classi�cation using only a simple linear separator.

However, the map φ lifting the original space S into the kernel space is usually not
explicit and the dimensionality of the kernel space is very high (or even in�nite). As a result,
algorithms that use the mapping φ directly are very ine�cient. The classical approach this
problem (the kernel trick) is to design algorithms that rely only on the scalar product in K,
given by the kernel function K(x, y) = φ(x) · φ(y) for all x, y ∈ S (see [MMR+01, SS02b]).

Here, we seek to attack the problem more directly, by constructing explicit and e�cient
maps of the data space into the kernel space of low dimension. Speci�cally, our goal is to
construct a map F : S → Rk, for some small value of k, such that, for any x, y ∈ S, the
scalar product F (x) · F (y) is (approximately) equal to K(x, y). This approach, in various
forms, has been proposed before, e.g., in [Blu06, AMS01, DM03, BBV06, RR07].

The approach has multiple bene�ts (see [RR07]). First, one can compute the large-
margin separator directly, using direct algorithms that are potentially more e�cient. Sec-
ond, the classi�cation itself can be done much more e�ciently. Speci�cally, in a standard
approach, an SVM outputs a classi�er1 f(x) =

∑S
i=1 αiK(x, xi), where {x1, . . . xS} are the

support vectors. Evaluating f(x) takes time that is linear in the number of support vectors,
which in principle could be as large as the number of the data points. In contrast, using the
explicit map F , one can compute the weights w of a linear separator explicitly by letting

1An example x is classi�ed as positive i� f(x) > 0.
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w =
∑S

i=1 αiF (xi). Then the classi�er can be de�ned as f(x) = F (x) ·w. The latter classi-
�er can be evaluated in only O(k) time, which is independent of the number of the support
vectors.

The existence of a map F into a low-dimensional kernel space for any kernel can be
derived from the random dimension-reduction techniques, such as Johnson-Lindenstrauss
lemma (see Fact 2.3.2 in Section 2.3). Namely, if we project the high-dimensional kernel
space into a random low-dimensional subspace, then the scalar product between any pair of
unit vectors is preserved up to an additive term of ε. Then the map F is de�ned as a compo-
sition of the high-dimensional map φ and the random projection. Arriaga�Vempala [AV06]
further prove that the resulting F also approximately preserves the separation margin be-
tween the two classes. Unfortunately, the aforementioned existential construction is highly
ine�cient, since it uses the original high-dimensional mapping φ : S → K. Instead, we
would like to construct a map F directly.

The problem of designing e�cient dimensionality reduction techniques of kernel spaces
has been previously investigated in the literature. Some of the �rst results were obtained for
a simpler problem of designing the map F that works for a particular purpose (e.g, linear
classi�cation) and for a given dataset. This question can be seen as approximating the
kernel (Gram) matrix Mij = K(xi, xj) of some data set D = {x1, . . . xn} (see, e.g., [Blu06,
BBV06, AMS01, DM03]). For example, [BBV06] consider the question of constructing F
after one draws a small number of samples from the dataset and has only black-box access
to K(x, y). Under this condition, they construct a low-dimensional map F that preserves
linear separability of the kernelized dataset. However, the constructed F depends on the
data distribution2. Furthermore, the constructed mapping preserves linear separability of
the data, but it does not appear to approximate the kernel function itself. Our more strict
condition guarantees usefulness of F for other applications of kernels, such as regression
and clustering. Because of these reasons, [Blu06, BBV06] asks if it is possible to construct
data-independent F for speci�c kernels.

More recently, Rahimi�Recht [RR07] provide the only currently known data-independent
constructions. They give two constructions for maps F that approximate the kernel space.
Their �rst construction works for the case when data live in the Euclidean space and the
kernel is shift-invariant, i.e., K(x, y) = K(‖x−y‖2). For S = Rd, their function F maps the
data points into a space of dimension k = O(d· log 1/ε

ε2
) and can be evaluated in a similar time.

The construction proceeds by de�ning each feature as a sinusoid with a parameter drawn
from a distribution de�ned by the Fourier transform of the kernel function. Their second
construction is designed speci�cally for the Laplacian kernel L(x, y) = e−‖x−y‖1 . The latter
construction computes each feature in two steps. First, a randomly-shifted grid is imposed
on the space Rd. Then a point x ∈ Rd is encoded as the id of the grid cell containing x,
represented in unary. Their experiments show that both methods compare favorably with
standard methods for classi�cation.

4.2 LSH for Approximating Kernel Spaces
We now show how the LSH technique yields a generic theoretical framework for approxi-
mating kernel spaces. In particular, we illustrate how some of the existing LSH families give
e�cient low-dimensional explicit maps F for corresponding spaces S and kernels K. Our

2In fact, as [BBV06] prove, this condition is necessary if we have only a black-box access to the kernel
function.
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approach generalizes the second approach of [RR07]. However, our framework expresses a
more general underlying phenomenon. As a result, we easily obtain mappings F for other
similarity or dissimilarity functions.

4.2.1 Kernel hash functions
We start by de�ning the notion of a family of kernel hash functions. Before giving a formal
de�nition, we explain the intuition. Ideally, we would like to obtain a distribution over
hash functions h such that Prh[h(x) = h(y)] = K(x, y) for all x, y ∈ S. However, such a
guarantee might be hard (or impossible) to obtain in some cases. Instead, we introduce a
relaxed notion, which we call a family of ε-approximate kernel hash functions.

De�nition 4.2.1. For ε > 0 and kernel function K, we de�ne a family of ε-approximate
K-kernel hash functions (KHF) as a set H of functions h : S → U for some set U if, for all
x, y ∈ S, we have ∣∣∣∣ Pr

h∈H
[h(x) = h(y)]−K(x, y)

∣∣∣∣ ≤ ε.

To illustrate the de�nition, we consider an example of such a family H for some speci�c
K and ε = 0. This family H is based on the original LSH scheme of [IM98]. Consider the
hypercube S = {0, 1}d with the kernel function Kp(x, y) =

(
1− H(x,y)

d

)p
, where p ∈ N is

a �xed positive integer, and H(·, ·) is the Hamming distance. We choose a hash function
h ∈ H by taking a random set of coordinates i1, . . . ip ∈ [d] (with replacement), and setting
h(x) = xi1 · · ·xip . In words, h is a projection to a random set of p coordinates. It is
immediate to check that H satis�es the above de�nition for ε = 0.

4.2.2 Kernel maps from approximate kernel hash functions
We now prove how, given a family of ε-approximate kernel hash functions, we obtain the
desired map F lifting data space into an (approximate) low-dimensional kernel space. In-
tuitively, we construct F (x) by sampling many hi ∈ H, for some family H of approximate
kernel hash functions, and then concatenating hi(x)'s.

Lemma 4.2.2. Let ε > 0. Fix a space S that admits a family H of ε-approximate K-kernel
hash functions, for a kernel function K. For any δ > 0, there exists a randomized mapping
F : S → Rk, where k = O( log 1/δ

ε2
), such that, for any x, y ∈ S, we have |F (x) · F (y) −

K(x, y)| < 2ε with probability at least 1− δ.
The time to compute F (x) is bounded by the time to evaluate functions from H, times k.

We note that the image of the mapping F has a very simple form: it is a scaled hypercube{
− 1√

k
,+ 1√

k

}k
.

Proof. Draw k functions h from H and call them h1, . . . hk. Consider the function

F (x) = 1√
k
· 〈E(h1(x)), E(h2(x)), . . . E(hk(x))〉,

where E : U → `2 is an �encoding function�, mapping the universe U into vectors of reals.
For now we assume that E is such that E(a) ·E(b) = 1 when a = b and E(a) ·E(b) = 0 when
a 6= b; we will relax this assumption later in the proof. Let χ[A] ∈ {0, 1} be the indicator
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random variable for an event A, which is equal to 1 i� A is true. Then, we can see that
F (x) · F (y) =

Pk
i=1 χ[hi(x)=hi(y)]

k . Furthermore, by Cherno� bound, we have
∣∣∣∣F (x) · F (y)− Pr

h
[h(x) = h(y)]

∣∣∣∣ ≤ ε/2

with probability at least 1 − δ/3. Finally, using the de�nition of ε-approximate K-kernel
hash functions H, we deduce that |F (x) ·F (y)−K(x, y)| ≤ ε+ ε/2 with probability at least
1− δ/3.

It remains to describe the encoding function E. A simple approach is to encode the
universe U in a unary format, that is, map symbols a ∈ U into a vectors of length U
with exactly one coordinate equal to 1. However this is ine�cient, since it multiplies the
target dimension k by |U |. Instead, for each coordinate i ∈ [k], we choose a random map
Ei : U → {−1,+1}, and take

F (x) = 1√
k
· 〈E1(h1(x)), E2(h2(x)), . . . Ek(hk(x))〉.

It is easy to see that even after this simpli�cation, |F (x) · F (y) − K(x, y)| ≤ 2ε with
probability at least 1− δ. Indeed, let c be the number of indexes i such that hi(x) = hi(y).
Then F (x)·F (y) is a sum of c ones and k−c independent random variables chosen uniformly
at random from {−1,+1}. We have already shown that |c/k−K(x, y)| ≤ ε+ε/2. By Cherno�
bound, the sum of the other k− c values is at most ε/2 · k with probability at least 1− δ/3.
The conclusion follows from an application of the triangle inequality.

4.2.3 Some families of kernel hash functions
Next we show how to obtain (approximate) kernel hash functions for various kernels from
the existing LSH families of functions. In fact, we show that most of the LSH families
from Section 3.5.1 and the new LSH family from Section 3.2.1 give approximate KHFs. By
Lemma 4.2.2, we immediately obtain e�cient maps F into low-dimensional kernel spaces,
for the corresponding kernels.

We defer the proofs of the lemmas from below to the next section for clarity.

Laplacian kernel. Consider the d-dimensional Manhattan space S = `d1 and the Laplacian
kernel L(x, y) = e−‖x−y‖1/σ, for some σ > 0. We show that, for any ε > 0, this space admits
a family of ε-approximate L-kernel hash functions based on the LSH functions of [AI06a,
And05]. The �nal resulting map is similar to the second construction of [RR07].

We show how to pick a hash function h ∈ H. Fix parameters p = 2/ε and t = σ · p.
Then construct p random functions fi, i = 1 . . . p, by imposing a randomly shifted regular
grid of side length t. Formally, we choose s1, . . . sd at random from [0, t), and de�ne

fi(x1, . . . , xd) , (b(x1 − s1)/tc, . . . , b(xd − sd)/tc).

The kernel hash function h is simply a concatenation of fi chosen as above: h(x) =
(f1(x), f2(x), . . . fp(x)).

Lemma 4.2.3. Let ε > 0. Suppose h is a hash function chosen as above. Then, for any
x, y ∈ `d1, we have

∣∣Prh[h(x) = h(y)]− L(x, y)
∣∣ ≤ ε.
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We note that the same result holds for the Laplacian kernel in the Euclidean space
(instead of `1), namely L2(x, y) = e−‖x−y‖2/σ. To obtain the family, we use the exact same
hash functions as above except that, for each fi, we rotate its grid at random beforehand.3

Near-Gaussian kernel. Consider the d-dimensional Euclidean space S = `d2 and the ker-
nel Kerfc(x, y) = erfc(‖x−y‖2/σ)

2−erfc(‖x−y‖2/σ) , where erfc(x) = 2√
π

∫∞
x e−t2dt is the Gauss error function.

As we show in a moment, this function approximates well the Gaussian kernel e−‖x−y‖22/σ2 .
A KHF for Kerfc follows from the LSH family from Section 3.2.1, which we recall here for

clarity. Set t = O( 1
ε2

log 1/ε) and w = 1
2
√

2

√
tσ. First pick a random projection from Rd to

Rt, denoted by the matrix A. Then, in the projected t-dimensional space, pick U = 2O(t log t)

grids of balls of radius w, where a grid u ∈ [U ] of balls is the (in�nite) set of balls with
centers at 4w · Zd + su for a random translation su ∈ [0, 4w)d. Finally, de�ne h(x) as the
index of the ball with the smallest u ∈ [U ] that contains the point Ax, the projection of x.

Lemma 4.2.4. Let ε > 0. Suppose h is a hash function chosen as above. Then, for any
x, y ∈ `d2, we have

∣∣Prh[h(x) = h(y)]−Kerfc(x, y)
∣∣ ≤ ε. The function h can be evaluated in

time 2Õ(1/ε2).

We note that this same family can be used for the Gaussian kernel G(x, y) = e−‖x−y‖22/σ2 ,
although we do not achieve an approximation for arbitrary value of ε > 0. However, the
following lemma proves that the above family is 0.16-approximate family of G-kernel hash
functions.

Lemma 4.2.5. Suppose h is a hash function chosen as above for �xed t = O(1) and w =
O(1). Then, for any x, y ∈ `d2, we have

∣∣Prh[h(x) = h(y)] −G(x, y)
∣∣ ≤ 0.16. The function

h can be evaluated in constant time.

Jaccard kernel. Consider the space of sets over some universe W , namely S = {A : A ⊆
W}, under the kernel KJ(A,B) = |A∩B|

|A∪B| .
Here, a KHF follows from the standard min-hash functions designed by [Bro97, BGMZ97].

A hash function is chosen as follows. Pick a random permutation π on the ground universe
W . Then, de�ne hπ(A) = min{π(a) | a ∈ A}. The family is 0-approximate kernel hash
function.

Geodesic kernel. Consider a hypersphere in d-dimensional space S = Sd−1 with the
kernel Kθ(x, y) = 1 − θ(x,y)

π , where θ(x, y) is the angle between vectors x and y which is
proportional to the geodesic distance from x to y on the hypersphere.

Here, a KHF follows from the �random hyperplane� hash function designed by Charikar [Cha02]
(inspired by [GW95]). A hash function is chosen as follows. Pick a random unit-length vector
u ∈ Rd, and de�ne hu(x) = sign(u ·x). The hash function can also be viewed as partitioning
the space into two half-spaces by a randomly chosen hyperplane passing through the center.
The resulting family is a family of 0-approximate Kθ-kernel hash functions.

3This can be seen as embedding the problem over Euclidean space to one on `1 [JS82] and then using the
above LSH.
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4.2.4 Proofs of the KHF properties
Proof of Lemma 4.2.3. The proof follows directly from Lemma 4.1.1 in [And05], which states
that for any fi, i = 1 . . . p,

1− ‖x− y‖1/t ≤ Pr
fi

[fi(x) = fi(y)] ≤ e−‖x−y‖1/t.

Since Prh[h(x) = h(y)] =
∏p
i=1 Prfi [fi(x) = fi(y)], the probability of collision under h is

(1− ‖x− y‖1/t)p ≤ Pr
h

[h(x) = h(y)] ≤ e−‖x−y‖1p/t.

If we let ∆ = ‖x− y‖1/σ, then ‖x− y‖1/t = ∆/p. We use the approximation e−ξe−
ξ2

1−ξ ≤
1− ξ ≤ e−ξ for ξ ∈ (0, 1). Then, for ∆/p ≤ 1/2, we obtain
∣∣∣∣Pr
h

[h(x) = h(y)]− e−‖x−y‖1/σ
∣∣∣∣ ≤ e−∆−e−∆·e−p

(∆/p)2

1−∆/p ≤ e−∆

(
1−

(
1− p (∆/p)2

1−∆/p

))
≤ 2
p

max
∆≥0

∆2

e∆
.

Since max∆≥0 ∆2/e∆ ≤ 1 and p = 2/ε, the above quantity is upper-bounded by ε. For
∆ > p/2 = 1/ε, the conclusion follows immediately since, in this case, e−‖x−y‖1/σ < ε.

Proof of Lemma 4.2.4. We use the analysis of this hash function from Section 3.2.2. First,
Lemma 3.2.2 proves that the entire space Rt will indeed be covered by balls with probability
at least 1 − 2−Ω(t log t) ≥ 1 − ε/4. Second, we argue that after the projection into Rt is
performed, the incurred distortion of ‖x − y‖2 is negligible. Indeed, let ∆ = ‖x − y‖2.
Johnson-Lindenstrauss lemma says that ∆′ = ‖Ax− Ay‖2 is within a multiplicative factor
of 1+ε/8 of ∆ (see Section 2.3). Then, |Kerfc(x, y)−Kerfc(Ax,Ay)| = |Kerfc(∆)−Kerfc(∆′)| =
|K ′erfc(ξ)| · |∆−∆′| ≤ ε/3 where ξ ∈ [∆(1− ε/8),∆(1 + ε/8)].

Finally, Eqn. (3.1) states that

Pr[h(Ax) = h(Ay)|‖Ax−Ay‖2 = ∆′] =
I(∆′/2, w)

1− I(∆′/2, w)
,

where I(∆′/2, w) is the probability that a random point chosen from a ball of radius w has
its �rst coordinate at least as big as ∆′/2. We approximate the distribution of the �rst
coordinate of a random point from a ball as a Gaussian of variance 1

tw
2, using an estimate

from [DF87]. The probability that a random Gaussian of variance 1
tw

2 is greater than ∆′/2 is
precisely 1

2 erfc(∆′·
√
t

2
√

2w
). Thus, we obtain that |I(∆′/2, w)− 1

2 erfc(∆′·
√
t

2
√

2w
)| ≤ 16/t ≤ ε/20

(see [DF87]). This further implies that
∣∣ I(∆′/2,w)
1−I(∆′/2,w) −Kerfc(∆′)

∣∣ ≤ ε/4.
In the end, we conclude that |Prh[h(x) = h(y)]−Kerfc(x, y)| ≤ ε.

Proof of Lemma 4.2.5. We observe that max∆∈[0,∞)

∣∣∣e−∆2 − erfc(0.4∆)
2−erfc(0.4∆)

∣∣∣ ≤ 0.158. The lemma
then follows by Lemma 4.2.4 for ε = 0.001.
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Chapter 5

NN via Product Spaces

In this chapter, we present our new approach to NN, based on embeddings into somewhat
unusual type of spaces, namely, iterated product spaces. One of the concrete consequence
of this approach is a new NN algorithm for the Ulam distance, a variant of edit distance
(see Section 2.1 for de�nitions and motivation). For strings of length d, we obtain an NN
algorithm that achieves Õ(log log d) approximation with dn1+ε space and dnε query time,
for any �xed ε > 0. We note that this beats the best possible bounds that can be achieved
via the classical approaches to Ulam distance. Speci�cally, embeddings into `1, `2, powers
thereof, `∞, or constant-sized sketches all lead to Ω̃(log d) approximation and/or ine�cient
NN algorithms, as is described in Chapters 1 and 7.

Recall that product spaces may be seen as combinations of the standard `1, `2, and `∞
norms. For example, `1-product of (l copies of) k-dimensional `∞ is a new norm, denoted as⊕l

`1
`k∞. The points in this space are l× k matrices with the following norm: take `∞ norm

of each row, and having obtained l positive reals, take their `1 norm to obtain the desired⊕l
`1
`k∞ norm. (See details in Section 2.1.)
Our NN algorithm for the Ulam distance essentially follows from two steps, proved in

this chapter:

• Ulam distance on strings of length d embeds into the iterated product space
⊕O(d)

(`2)2

⊕O(log d)
`∞ `

O(d)
1 ,

with constant distortion;

• the
⊕O(d)

(`2)2

⊕O(log d)
`∞ `

O(d)
1 space admits an e�cient NN with a (roughly) double-logarithmic

approximation.

These two steps substantiate our more general message � that the iterated product
spaces may give a better balance between richness and tractability as a host space of an
embedding. Indeed, �rst, the constant distortion embedding of Ulam distance indicates that
the (iterated) product spaces are richer than any of its separate components, `1, squared-`2,
or low-dimensional `∞.

Second, we demonstrate that there are good solutions for the NN algorithm for the
iterated product spaces. In fact, we will show something more general: it is possible to
achieve NN algorithms for any iterated product space of any combination of `p norms (for
a �xed number of iterations), with only (log logn)O(1) approximation.

Furthermore, using the new approach we also obtain an improved NN algorithm for the
planar Earth-Mover Distance metric. This metric also su�ers from the same bottleneck as
the Ulam/edit distances in the context of classical approaches to it.
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Finally, to give further evidence of the versatility of the product spaces, in the next
chapter, we will show how product spaces play an important role in obtaining algorithms
for other applications, such as approximating edit distance in near-linear time.

In the rest of the chapter, we describe the new NN algorithms for product spaces, as well
as the embedding of Ulam distance into product spaces. We then combine the two steps to
obtain the new NN algorithm for the Ulam distance. We also describe how to obtain a new
NN algorithm for EMD. The results from this chapter have previously appeared in [AIK09].

5.1 New Algorithms for Iterated Product Spaces
We now design e�cient algorithms for iterated product spaces. For example, to obtaining
an NN algorithm for Ulam with Õ(log log d) approximation, we develop an NN algorithm
for the space

⊕k
(`p)p

⊕l
`∞ `

m
1 for p ∈ [1, 2].

Our main ingredient is a new NN scheme designed for an `p-product metric
⊕

`p
M,

for all p ∈ [1,∞). This latter scheme uses a technique, which we call black-box Locality
Sensitive Hashing. As described in Chapter 3, LSH-type techniques have been used before
for NN under simple metrics like `1 and `2, and are based on probabilistic partitions of the
corresponding space. Naturally, for a metric like

⊕
`1
M, we cannot hope to do a similar

partitioning of the space since we do not have any information about the metricM. However,
we show the space can be partitioned in a black-box manner so as to e�ectively reduce NN
for

⊕
`1
M to NN for the max-product

⊕
`∞M, with a mild increase in parameters. For the

latter max-product
⊕

`∞M, we can use the algorithms of [Ind98, Ind02b]. We note that a
related idea was also present in [Ind04]. However, the algorithm of [Ind04] had much larger
(super-logarithmic) approximation factor, which makes it inapplicable to the scenarios we
consider here.

We note that our approach also gives NN algorithms for `p spaces for p ∈ (2,∞), by
setting M = R. No algorithms for such spaces were previously known. Before continuing
with the main theorem statement, we de�ne the following a natural �scaling� property of a
metric space.

De�nition 5.1.1. Let (M, dM) be a metric space. A map σ : M → M is called an α-
dilation, for α > 0, if for all x, y ∈ M we have dM(σ(x), σ(y)) = α · dM(x, y). The metric
is called scalable if for every α > 0 it has an α-dilation σα. To simplify notation, we write
α · x for σα(x).

We now show how to reduce an `p-product metric to an `∞-product metric, for any
p ∈ [1,∞). Note that for p = 1, this corresponds to an `1-product

⊕
`1
M.

Theorem 5.1.2 (NN for `p-product). Let (M, dM) be a scalable metric space where com-
puting distance take τM time. Also let k ≥ 1. Suppose there is an NN scheme for the
max-product

⊕k
`∞M with approximation c, query time Q(n), and space S(n). Then for

every p ∈ [1,∞), and ε > 0, there is an NN scheme for the `p-product
⊕k

`p
M with approx-

imation c̃ = 2
ε c, query time O(nε

p
) · (Q(n) + kτM), and space O(nε

p
) · S(n).

We note that we can combine the above theorem with an existing algorithm for the
`∞-product of a metric of [Ind02b, Ind98]. We describe this in more detail once we prove
Theorem 5.1.2.
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Proof of Theorem 5.1.2. On an intuitive level, we design a generalization of the Locality
Sensitive Hashing (LSH), introduced in Chapter 3. As mentioned there, LSH has been used
to design NN under simple metrics like `1 and `2. Remember that LSH is a (non-adaptive)
hashing scheme that probabilistically partitions the entire space into buckets such that a
pair of �close� points (distance ≤ R) have higher probability of collision (i.e., falling into the
same bucket) than a pair of �far� points (distance > c̃R). The LSH algorithm then builds
several hash tables, each hashing all n data points according to a fresh random partition.
Upon receiving a query q, the algorithm computes the hash of q and linearly scans the data
points that fall into the same bucket and reports those that are indeed close to q.

Ideally, we would like to be able to similarly partition the space
⊕

`p
M, however we

cannot do this since we have no control overM. (Moreover, when p > 2, we do not even know
of any LSH functions for the simple `p norm, much less for an `p-product.) Nonetheless,
we manage to do so in a black-box manner, as will be seen later, replacing a hash table
structure by a nearest neighbor data structure for

⊕
`∞M. Our algorithm may be viewed

as a (distant) generalization of the LSH scheme for `1 described in the LSH Library in
Section 3.5.1. We now describe our algorithm in detail.

Let ε = ε/2 ∈ (0, 1
2). Note that c̃ becomes c̃ = c/ε in the new notation.

Fix a threshold radius R > 0. Let fp(z) = pzp−1

w e−zp/w be the derivative of e−zp/w, where
w = (R/ε)p/ ln 2n1/(1−εp). Note that fp(z) de�nes a probability distribution on z ∈ [0,∞)
since

∫∞
0 fp(z)dz = 1 and fp(z) ≥ 0.

Preprocessing stage. For L = 10nε
p/(1−εp) ≤ 10n(2ε)p , construct L di�erent max-

product data structures (these correspond to the L hash tables of an LSH scheme). For each
i ∈ [L], construct one max-product data structure Mi, as follows. Pick reals si1, si2, . . . sik
each from the distribution fp. From the dataset D, construct the dataset D̃i containing all
x̃ such that x̃ is obtained from x ∈ D by scaling each coordinate j ∈ [k] in the product by
1/sij . In other words, if xj ∈M is the jth coordinate of x ∈ D ⊆Mk, then

D̃i =
{
x̃ =

(
x1/s

i
1, x2/s

i
2, . . . xk/s

i
k

) ∣∣ x ∈ D}
.

Finally we let Mi be a near-neighbor data structure for
⊕k

`∞M metric with the threshold
set to R′ = 1, constructed on the dataset D̃i.

Query algorithm. Given a query point q ∈ Mk, iteratively go over Mi for all i ∈ [L].
For each Mi, compute q̃i = (q1/si1, q2/s

i
2, . . . , qk/s

i
k) and query the point q̃i in Mi. For

each returned point x, compute the actual distance from q to x and report the point x if
dp,M(x, q) ≤ c̃R, where c̃ = c/ε. Once such a point is reported, stop.

Correctness and running time. The analysis is somewhat reminiscent of the one used
for the standard LSH scheme. Fix one NN data structure Mi. We prove that, for each Mi,
none of the �far� (under original metric) points x may be returned by Mi, with probability
at least 1/2. Also, each R-near neighbor (under the original metric) is a near neighbor in
someMi (under theMi's metric, the max-product), with constant probability. Both of these
facts allows us to conclude the correctness and query time bound.

We start by computing the probability P2 that a �far� point x, with dp,M(x, q) > c̃R,
becomes a c-near neighbor in the Mi data structure, for the query q̃i. In other words, the
probability P2 is equal to the probability that the point x̃i =

(
x1/s

i
1, x2/s

i
2, . . . xk/s

i
k

)
is
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within d∞,M distance c of q̃i (in the terms of an LSH scheme, this event is a �collision�). Let
δj = dM(xj , qj) for j ∈ [k]. Note that

∑
j δ

p
j = (dp,M(x, q))p > (c̃R)p by the de�nition of x.

Now, for each coordinate j ∈ [k], we have dM(x̃ij , q̃
i
j) ≤ c if and only if δj/sij ≤ c, or,

equivalently, sij ≥ δj/c. Thus, the probability that d∞,M(x̃i, q̃i) ≤ c is precisely equal to

Pr
[
d∞,M(x̃i, q̃i) ≤ c] =

k∏

j=1

∫ ∞
z=δj/c

fp(z)dz =
k∏

j=1

e−(δj/c)
p/w < e−(c̃R/c)p/w = 1

2n
−1/(1−εp).

Thus we get that P2 ≤ n−1/(1−εp)/2. Similarly, one can compute P1, de�ned as the
probability that ‖x̃i − q̃i‖ ≤ 1 given that dp,M(x, q) ≤ R:

P1 ≥ Pr
[
d∞,M(x̃i, q̃i) ≤ 1

]
=

k∏

j=1

∫ ∞
z=δj

fp(z)dz ≥ e−Rp/w = 2−ε
p
n−ε

p/(1−εp).

Now, let F be the set of dataset points that are �far�, i.e., are at distance more than c̃R
from q. Let C be the set of R-near neighbors of q.

Then, for each data structure Mi, in expectation, only at most n−1/(1−εp)/2 · n =
n−εp/(1−εp)/2 points from F become a possible answer for Mi. By a Markov's bound,
with probability at least 1 − n−εp/(1−εp)/2, none of the points from F are a possible an-
swer for Mi. Furthermore, if there exists an R-near neighbor x ∈ C, then this point x
remains a 1-NN under Mi's distance (and is thus a valid answer for Mi) with probabil-
ity at least P1 ≥ 2−εp

n−εp/(1−εp). Thus, an Mi returns some c̃R-near neighbor of q with
probability at least 2−εp

n−εp/(1−εp) − n−εp/(1−εp)/2 ≥ 0.2 · n−εp/(1−εp). In total, over all L
data structures Mi, the probability of reporting some c̃R-near neighbor becomes at least
1− (1− (0.2 · n−εp/(1−εp)))L ≥ 1− e−0.2·10 ≥ 0.8.

Since we can implement each Mi with query time Q(n) and space S(n), the �nal data
structure has query time L · (Q(n) + O(kτM)) = O(n(2ε)p

) · (Q(n) + kτM), and similarly
space is O(n(2ε)p

) · S(n). Replacing ε = ε/2 , we obtain the desired bounds.

We now prove our most general NN result: that any iterated product space of `p's
admits an e�cient NN with only (log logn)O(1) approximation. We �rst de�ne iterated
product spaces more formally: a t-iterated space is the following space, for some q ∈ [1,∞),
p1, . . . pt ∈ [1,∞], and k1, . . . kt ∈ N:

S =
⊕k1

(`p1 )q

⊕k2

`p2

· · ·
⊕kt−1

`pt−1

`kt
pt
.

For example, 1-iterated spaces include `1, `2, `∞ and their powers. We note that, without
loss of generality, we need not consider higher powers of norms beyond the �rst product.

We prove the following theorem.

Theorem 5.1.3. For any ε > 0, there exists an NN algorithm for the space S with the
following parameters:

• O((log logn)t · (ε/t)−t−1/p1−1/p2−...−1/pt)q approximation,

• O(nε · k1k2 . . . kt) query time, and

• O(n1+2ε · (k1k2 . . . kt)2) space and preprocessing.
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The theorem follows from combining, recursively, the above theorem with the following
NN algorithm for an `∞-product of [Ind02b, Ind98].

Theorem 5.1.4 ([Ind02b, Theorem 1], [Ind98]). Consider metric (M, dM) with an NN
algorithm that achieves approximation c, query time Q(n), and space S(n).1 Then, for
every ε > 0, there exists NN under

⊕k
`∞M with:

• O(ε−1 log log n) approximation,

• O((Q(n) + kτM) log n) query time, where τM is the time to compute distance in M,
and

• S(n) · O(kn1+ε) space/preprocessing, and, if S(n) ≤ λ · n1+ρ for some λ and ρ, then
the space/preprocessing becomes O(λk2n1+ε+ρ).

For the `∞ case (when M = R), the approximation becomes O(ε−1 log log k), with
O(k logn) query time and O(kn1+2ε) space/preprocessing.

Proof of Theorem 5.1.3. We design an NN for the qth root of the space S, namely:

S ′ =
⊕k1

`p1

⊕k2

`p2

· · ·
⊕kt−1

`pt−1

`kt
pt

=
⊕k1

`p1

⊕k2

`p2

· · ·
⊕kt−1

`pt−1

⊕kt

`pt

R,

which is a metric. We now apply Theorems 5.1.2 and 5.1.4 in order, for t times, with the
following parameters ε: ε1/p1 , ε, ε1/p2 , ε, . . .. Also, we note that R admits a trivial e�cient
NN for 2-approximation, with O(1) query time, and O(n) space: just chop up the line into
segments of length R, store one dataset point per segment, and, for a query q, check its
segment as well as the left/right segments. We obtain the following parameters for S ′:
• O(log logn)t · ε−1/p1−1−1/p2−1−...−1/pt−1 approximation,

• O(ntε · k1k2 . . . kt) query time, and

• O(n1+2tε · (k1k2 . . . kt)2) space and preprocessing.

The theorem follows from scaling ε and raising the approximation to power q to get the
approximation under the distance of the space S.

5.2 Embedding Ulam Distance into Product Spaces
We now show that the Ulam distance embeds well into product spaces. Combined with the
NN algorithms for product spaces from the previous section, we will obtain greatly improved
NN algorithms for the Ulam distance; we will describe these algorithms in the next section.

We present two embedding of the Ulam distance into product spaces. The �rst one is
a constant distortion embedding of Ulam distance into

⊕d
(`p)p

⊕O(log d)
`∞ `2d1 for every �xed

p ∈ (1, 2].

Theorem 5.2.1. For every d ∈ N and p = 1 + ε where ε > 0, there exists an embedding
ϕ : Ulamd 7→

⊕d
(`p)p

⊕O(log d)
`∞ `2d1 such that for all x, y ∈ Ulamd:

ed(x, y) ≤ dpp,∞,1(ϕ(x), ϕ(y)) ≤ O(1
ε ) · ed(x, y).

1Strictly speaking, we need to impose a technical condition on the NN forM, but it is satis�ed in all our
scenarios; see [Ind02b, Section 2] for details.
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When ϕ is viewed as an embedding into `O(d2 log d)
1 , it has distortion O(log2 d). The image

ϕ(x) of an input string x can be computed in time O(d2 log d).

This embedding alone already yields an approximation of (log logn)O(1) for the NN under
the Ulam distance, via the general Theorem 5.1.3. To further improve the approximation to
depend only on d (as opposed to n), we design a second embedding, which is derived from
the �rst one. The second embedding has the advantage of a somewhat simpler host space,⊕

(`p)p `∞, however, it handles only one scale of distances and has high dimension (for our
intended use).

Lemma 5.2.2. For every 1 ≤ R,α ≤ d there is a randomized map ϕ̂ : Ulamd →
⊕d3

(`p)p `m∞
with m = dO(α), such that for every x, y ∈ Ulamd, and p = 1 + ε for ε > 0, with probability
at least 1− e−Ω(d2) we have:

• if ed(x, y) ≥ R then dpp,∞(ϕ̂(x), ϕ̂(y)) ≥ Ω(R), and

• if ed(x, y) ≤ R/α then dpp,∞(ϕ̂(x), ϕ̂(y)) ≤ O(ε−1 ·R/α).

We note that the main tools behind our embeddings also lead to improved algorithms
for the problem of sublinear distance estimation for Ulam distance and a variant of smoothed
(standard) edit distance � see details in the bibliographic notes at the end of the chapter.

5.2.1 First embedding of the Ulam distance
We now give our embeddings of the Ulam distance into

⊕d
(`p)p

⊕O(log d)
`∞ `2d1 , thus proving

Theorem 5.2.1.
Our new embedding of Ulam metric is based on a new estimate of Ulam's distance. It is

inspired by previous work on testing and estimating the distance to monotonicity/sortedness [EKK+00,
ACCL07, GJKK07], but unlike the previous estimates which are asymmetric in the two
strings, our new estimate is entirely symmetric in the two strings. Our estimate uses primi-
tives such as �count�, �there exists�, and �majority�. Although the last two primitives do not
look very �geometric�, our estimate will be such that it can be transformed into a distance
function, in fact a norm, de�ned via iterated product spaces. The resulting embedding
turns out to be very simple to compute, mapping a string into a carefully chosen collection
of incidence vectors of its substrings.

Before continuing to the proofs, we introduce some additional notation. As mentioned
in Section 2.1, Ulamd denotes the Ulam metric over strings of length d over alphabet Σ;
we assume, for simplicity of presentation that Σ = [d]. For P,Q ∈ Ulamd, we let ed(P,Q)
denote the minimum number of deletions from P to obtain a subsequence of Q. Note that
ed(Q,P ) = ed(P,Q) and ed(P,Q) ≤ ed(P,Q) ≤ 2 ed(P,Q). For x ∈ Σd, we use the notation
xi or x[i] to refer to the ith position in x.

We start by presenting the construction of the embedding ϕ.

Construction of ϕ. We use the following notation. For P ∈ Ulamd, we assume by
convention that in positions j = 0,−1, . . . ,−d + 1 we have P [j] = j and set the extended
alphabet to be Σ̄ = {−d + 1, . . . , d}. For a ∈ [d] and k ∈ [d], let Pak be a set containing
the k symbols that appear in the k positions immediately before symbol a in P , i.e. Pak =
{P [P−1[a]− k], . . . , P [P−1[a]− 1]}.

We proceed in three steps. First, for a symbol a ∈ [d] and integer k ∈ [d], we de�ne
ϕak : Ulamd 7→ `2d1 by setting ϕak(P ) to be the 0/1 incidence vector of Pak scaled by
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1/2k. Thus, ϕak(P ) ∈ {0, 1
2k}Σ̄ and has exactly k nonzero entries. Distances in this host

space are computed using the `1-norm, namely ‖ϕak(P ) − ϕak(Q)‖1. Second, for every
a ∈ Σ, de�ne ϕa : Ulamd 7→

⊕O(log d)
`∞ `2d1 to be the direct sum ϕa(P ) = ⊕k∈Kϕak(P ),

where K = {d(1 + γ)ie : i = 0, 1, . . . , dlog1+γ de} ranges over all powers of 1 + γ in [d]
where we set γ = 1/4.2 Distances in this product space are computed using an `∞-norm,
namely d∞,1(ϕa(P ), ϕa(Q)) = maxk∈K ‖ϕak(P ) − ϕak(Q)‖1. Third, de�ne ϕ : Ulamd 7→⊕d

(`p)p

⊕O(log d)
`∞

⊕2d
`1

by the direct sum ϕ(P ) = ⊕a∈[d]ϕa(P ). Distances in this host space
are computed using (`p)p, i.e. dpp,∞,1(ϕ(P ), ϕ(Q)) =

∑
a∈[d]

(
d∞,1(ϕa(P ), ϕa(Q))

)p.

An estimate of the Ulam distance. The following lemma is key to the proof of The-
orem 5.2.1 and provides an estimate on the Ulam distance between two permutations. It
is inspired by, and technically builds upon, [EKK+00, ACCL07, GJKK07], which gave esti-
mates to the distance from P to a �xed permutation, say the identity (hence called distance
to monotonicity). Relabeling of the symbols can clearly be used to apply these previous
estimates to two arbitrary permutations P and Q; however, it requires an explicit descrip-
tion of Q−1, which is ine�cient or just impossible, in our intended applications.3 Thus, the
main advantage of our estimate is that it is the �rst one which is e�cient for two arbitrary
permutations. In the sequel, we use A4B to denote the symmetric di�erence between two
sets A,B.

Lemma 5.2.3. Fix P,Q ∈ Ulamd, and let 0 < δ ≤ 1/2. Let Tδ be the set containing all
symbols a ∈ Σ for which there exists k ∈ [d] such that the symmetric di�erence |Pak4Qak| >
2δk. Then

1
2

ed(P,Q) ≤ |Tδ| ≤ 4
δ
· ed(P,Q). (5.1)

In the case of two permutations P and Q, there is a crucial (albeit technical) di�erence
between our estimate and the previous ones, including [ACCL07, GJKK07]. The core of
all such estimates is a count of the number of symbols that satisfy a particular �easy to
compute� property with respect to the rest of the strings. In our case, for a given symbol a
and an integer k, the property is based on the value of |Pak4Qak| (the symmetric di�erence
between the k symbols appearing immediately before a in P and similarly in Q); and it is
well-known that symmetric di�erence can be expressed as the `1 di�erence between the
respective incidence vectors. In contrast, previous estimates are based on the count of how
many of the k symbols appearing immediately before a in P (i.e. the set Pak), appear in
Q after a. Such a set-intersection formulation does not lend itself to embeddings. In this
sense, our estimate is symmetric with respect to P and Q, while previous ones are not.
Nevertheless, our proof relies on the technical analysis of [ACCL07, GJKK07], but in a
rather nontrivial way. In particular, we restore symmetry between the two permutations by
applying the known bounds twice, once from P towards Q and once from Q towards P . The
full proof of Lemma 5.2.3 follows.

Proof of Lemma 5.2.3. Fix P,Q ∈ Ulamd and 0 < δ ≤ 1/2. We say that two distinct
symbols a, b ∈ Σ are inverted in P vs. in Q if these symbols do not appear in the same

2To simplify the exposition, we shall ignore rounding issues and the fact that the largest value in K
should be capped by d.

3We seek embeddings that are oblivious, i.e., the image of P has to be determined independently of Q. In
the NN algorithms, the data string P are preprocessed without knowing the query Q. Sublinear algorithms
cannot a�ord to compute Q−1 explicitly, as it would take linear time.
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order in P and in Q, i.e. if (P−1[a]− P−1[b])(Q−1[a]−Q−1[b]) < 0. We say that a pair of
indexes i, j in P is inverted if the respective symbols P [i], P [j] are inverted. De�ne a set
RPδ containing all indexes i ∈ [d] for which there is j < i such that for more than δ-fraction
of indexes j′ ∈ [j, i − 1] the pair of indexes i, j′ is inverted in P . We know from [GJKK07,
Lemma 3.1] that

ed(P,Q) ≤ 2|RP1/2|. (5.2)
(It is assumed therein that Q is the identity permutation; the bound above may seem more
general but it follows immediately by relabeling symbols.) We claim that RP1/2 ⊆ RPδ ⊆ Tδ.
Indeed, whenever a ∈ RP1/2, there is j < i such that more than 1/2 ≥ δ of the indexes
j′ ∈ [j, i−1] are inverted with respect to i in P , and in particular P [j′] ∈ Pa,i−j\Qa,i−j . Since
|Pa,i−j | = |Qa,i−j | = i − j, it follows that |Pa,i−j4Qa,i−j | = 2|Pa,i−j \ Qa,i−j | > 2δ(i − j),
and thus a ∈ Tδ, proving the claim. Using the claim and (5.2), we have ed(P,Q) ≤ 2|Tδ|,
which proves the �rst inequality in (5.1).

We proceed to proving the second inequality in (5.1). Fix an optimal alignment between
P and Q, namely a subset D ⊆ Σ, |D| = ed(P,Q) such that deleting the symbols of D from
P and from Q yields identical strings. Let DP = {i ∈ [d] : P [i] ∈ D} denote the indexes
of D in P , and de�ne DQ similarly for Q. De�ne a set SPδ containing all indexes i ∈ [d] for
which there is j < i such that more than δ-fraction of indexes j′ ∈ [j, i − 1] belong to DP .
Let SQδ be de�ned similarly for Q. We then know from [GJKK07, Lemma 3.2],4 that for all
0 < δ′ ≤ 1/2,

|RPδ′ \DP | ≤ |SPδ′ | ≤ (1− δ′)/δ′ · |DP |,
and, in fact, that RPδ′ \DP ⊆ SPδ′ . Therefore we deduce that

|RPδ′ ∪ SPδ′ | ≤ |DP ∪ SPδ′ | ≤ 1
δ′ · |DP |, (5.3)

and similarly for Q.
We next show that

|Tδ| ≤ |RPδ/2 ∪ SPδ/2|+ |RQδ/2 ∪ SQδ/2|. (5.4)

Indeed, consider a ∈ Tδ and let k ∈ [d] be its witness, namely |Pak4Qak| > 2δk. The
case where P−1[a] ∈ RPδ/2 ∪ SPδ/2 can be paid for using the term |RPδ/2 ∪ SPδ/2|. The case
where Q−1[a] ∈ RQδ/2 ∪ SQδ/2 can be paid for using the term |RQδ/2 ∪ SQδ/2|. We now claim
that these are the only two possible cases, i.e. not being in either of the two cases implies
a contradiction. Indeed, if a ∈ Tδ and P−1[a] /∈ RPδ/2 ∪ SPδ/2, then there must be at least
one symbol b′ ∈ Σ̄ such that (a) b′ ∈ Pak \ Qak; (b) b′ is not inverted wrt to a; and (c)
b′ is not in D. Using (a) and (b) we have that (d) b′ appears in Q more than k positions
before a (i.e. its index in Q is smaller than Q−1[a]− k). Since also Q−1[a] /∈ RQδ/2 ∪SQδ/2, we
similarly obtain a symbol b′′ ∈ Σ̄ such that (a') b′′ ∈ Qak; (c') b′′ is not in D; and (d') b′′
appears in P more than k positions before a. We obtain from (a) and (d') that b′ appears
after b′′ in P , and from (a') and (d) that b′′ appears after b′ in Q. Thus, the symbols b′, b′′
are inverted, and at least one of them must belong to D, contradicting (c) and (c'). This
proves the claim and (5.4).

Finally, using (5.3), (5.4), and the fact that |DP | = |DQ| = ed(P,Q), we conclude |Tδ| ≤
2
δ |DP |+ 2

δ |DQ| = 4
δ ed(P,Q), which proves the second inequality in (5.1), and completes the

proof of Lemma 5.2.3.
4A similar upper bound, up to constant factors, is implied by results of [ACCL07, Lemma 2.3].
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We can now complete the proof of Theorem 5.2.1 using Lemma 5.2.3. We need to
bound the distortion of ϕ when viewed as an embedding into

⊕
(`2)2

⊕
`∞ `1. In a nut-

shell, the distortion of the embedding roughly corresponds to
∑

δ=2−j δp|Tδ|/ ed(P,Q) ≤
O(

∑
δ=2−j δp−1) ≤ O(1/(p−1)), where the squared term comes from the outer (`p)p-product,

and would not work if instead we were to use `1 as the outer product.

Proof of Theorem 5.2.1. Fix two distinct permutations P,Q ∈ Ulamd. By de�nition, for all
a ∈ Σ and k ∈ [d] we have ‖ϕak(P )− ϕak(Q)‖1 = 1

2k |Pak4Qak|.
We �rst bound dpp,∞,1(ϕ(P ), ϕ(Q)) from below. By Lemma 5.2.3 (and its notation) for

δ = 1/2, we know that |Tδ| ≥ 1
2 ed(P,Q). Now �x a ∈ Tδ. Then there exists k ∈ [d] such

that |Pak4Qak| > 2δk, and rounding this k upwards to the next power of 1 + γ, we obtain
k′ ∈ K such that ‖ϕak′(P ) − ϕak′(Q)‖1 = 1

2k′ |Pak′4Qak′ | ≥ 1
2k′ (2δk − 2γk) = δ−γ

1+γ = 1
5 .

(We remind that the rounding issues we neglected would lead to slightly worse constants.)
Thus, for each a ∈ Tδ we have d∞,1(ϕa(P ), ϕa(Q)) ≥ 1/5, and thus

dpp,∞,1(ϕ(P ), ϕ(Q)) ≥
∑

a∈Tδ

(1
5)p ≥ ed(P,Q)/2

25 = ed(P,Q)
50 .

To bound dpp,∞,1(ϕ(P ), ϕ(Q)) from above, we relax the range k ∈ K into k ∈ [d], and
break the contribution arising from di�erent a ∈ Σ into buckets of the form [2−j , 2−j+1].
Remember that p = 1 + ε for some small ε > 0.

dpp,∞,1(ϕ(P ), ϕ(Q)) =
∑

a∈Σ

(
d∞,1(ϕa(P ), ϕa(Q))

)p

≤
∑

a∈Σ
max
k∈[d]
‖ϕak(P )− ϕak(Q)‖1+ε

1

=
∑

a∈Σ
max
k∈[d]

[
1
2k |Pak4Qak|

]1+ε

≤ 1 +
log d∑

j=1

(2−j+1)1+ε · |T2−j |.

By Lemma 5.2.3, we have |T2−j | ≤ 2j+2 · ed(P,Q), and therefore

dpp,∞,1(ϕ(P ), ϕ(Q)) ≤ 1 +
log d∑

j=1

2−εj+4 · ed(P,Q) ≤ O(1
ε ) · ed(P,Q).

The second part of the theorem results from a similar computation on ‖ϕ(P )−ϕ(Q)‖1.

‖ϕ(P )− ϕ(Q)‖1 =
∑

a∈Σ

‖ϕa(P )− ϕa(Q)‖1

≤ O(log d) ·
∑

a∈Σ

max
k∈K
‖ϕak(P )− ϕak(Q)‖1

≤ O(log d) ·

1 +

log d∑

j=1

2−j+1 · |T2−j |



≤ O(log2 d) · ed(P,Q).
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5.2.2 Second embedding of the Ulam distance
We now give our second embeddings of the Ulam distance that proves Lemma 5.2.2.

Proof of Lemma 5.2.2. We start with the embedding ϕ from Theorem 5.2.1, and construct
from it ϕ̂ using, along the way, the Ulam characterization from Lemma 5.2.3. There are
two steps in the construction. The main (second) step is to do a randomized dimensionality
reduction in the inner `d1 to `1 of dimension only l = O(α log d), using [KOR00]-type sketches.
Then we can embed `l1 into `∞ of dimension m = 2l using the classical isometric embedding
(see, e.g., [Ind01a]). This step alone, however, will increase the distance by accumulating a
lot of �spurious noise�, generated by the approximation errors of the dimensionality reduction
in `1 for the outer coordinates a ∈ Tδ with small δ's. To overcome this roadblock, in the
�rst step, we need to do a randomized reorganization of the coordinates so that we have a
good control over the noise coming from Tδ's in comparison to the legitimate coordinates
contributing to the distance.

Let ϕ be the embedding from Theorem 5.2.1.
First step. We construct ϕ′ : Ulamd →

⊕d3

(`p)p

⊕O(d log d)
`∞ `d1 from ϕ with the property

that, for any x, y ∈ Ulamd, with probability 1− e−Ω(d2), we have that

Ω(min{d3, d3 · ed(x,y)
R }) ≤ dpp,∞,1(ϕ′(x), ϕ′(y)) ≤ O((p− 1)−1 ·min{d3, d3 · ed(x,y)

R }). (5.5)

Speci�cally, for each coordinate i ∈ [d3], randomly pick a set Si ⊆ [d] by including each
index a ∈ [d] with probability 1/R. Then construct ϕ′i = ⊕a∈Siϕa. Note that we can view
ϕ′i as ϕ′i(x) ∈

⊕|Si|
`∞

⊕O(log d)
`∞ `d1 ⊆

⊕O(d log d)
`∞ `d1. We use the notation ϕ′i,a = ϕa.

We show that ϕ′ satis�es Eqn.(5.5). Fix some particular x, y at distance ed(x, y) = Q ≤
R. De�ne T ′δ, for δ > 0, as the number of coordinates i such that d∞,1(ϕ′i(x), ϕ′i(y)) ≥ δ.
We will prove that T ′δ ≤ O(1

δ · Q·d
3

R ), similarly to what Lemma 5.2.3 claims for Tδ's. Indeed,
the probability that d∞,1(ϕ′i(x), ϕ′i(y)) ≥ δ is bounded by the probability that Si ∩ Tδ 6= ∅.
Thus,

Pr[d∞,1(ϕ′i(x), ϕ
′
i(y)) ≥ δ] ≤ 1− (1− 1/R)|Tδ| ≤ 1− (1− 1/R)O(Q/δ) ≤ O( QδR).

By Cherno� bound over all d3 coordinates i, we conclude that T ′δ ≤ O( QδR · d3) with
probability at least 1−e−Ω(d2). Analogously, it is easy to see that T ′1/2 = min{1, Q/R}·Ω(d3).

Given the bounds on T ′δ's, we deduce Eqn. (5.5) as we did in the Theorem 5.2.1 for ϕ.
Second step. We now view ϕ′ obtained from the last step as ϕ′(x) ∈⊕d3

(`p)p

⊕d
`∞

⊕O(log d)
`∞ `d1.

Thus, for each outer product coordinate i ∈ [d3], second-product coordinate a ∈ Si, and
third-product coordinate k ∈ [K], the vector ϕi,a,k is a d-dimensional Hamming vector
scaled by 1/2k. Consider the mapping ψi,a,k : {0, 1}d → {0, 1}l, where each coordinate
j ∈ [l] of ψi,a,k is de�ned as follows. For each character b ∈ [d], pick an indicator rj,b ∈ {0, 1}
that is equal to one with probability δk = 1

4k . Then, for a vector v ∈ {0, 1}d, we de�ne
ψi,a,k(v) =

(
(
∑

b∈[d] vbrj,b) mod 2
)
j∈[l]

.

Finally we can de�ne the embedding ϕ̂ : Ulamd →
⊕d3

(`p)p

⊕O(d log d)
`∞ `2

l

∞. Let η : `l1 → `2
l

∞
be the isometric map from `l1 to `2l

∞ (see, e.g., [Ind01a]). We de�ne ϕ̂ as
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ϕ̂(x) =
(
R
d3

)1/p · ⊕i∈[d3] ⊕a∈Si ⊕k∈[K] η(1
l · ψi,a,k(2k · ϕa,k(x))).

In words, we start with the embedding ϕ′, and, for each �xed i, a, k, we consider the `1
vector ϕ′i,a,k = ϕa,k (corresponding to innermost `1), and do a dimensionality reduction on
it using ψi,a,k. ψi,a,k performs l scalar products of 2kϕ′i,a,k ∈ {0, 1}d with random vectors
rj . We then normalize the resulting vector by multiplying it with 1/l. The obtained vector
in {0, 1}l is then mapped into `2l

∞ using η. Finally, we scale the entire vector with (R/d3)1/p

so that, say, distance that were d3 before become R (we need to take the pth-root of R/d3

because the outer product is (`p)p that raises the multipliers to power p).
Next, we prove that ϕ̂ satis�es lemma statement. Fix some x, y at distance Q. De�ne

T ′′δ to be the set of all ((`p)p-product) coordinates i such that ‖ϕ̂i(x)− ϕ̂i(y)‖∞ ≥ δ.
First, suppose Q = R/α. As before, we will prove that |T ′′δ | ≤ O(1

δ ) · Q·d
3

R . For δ ≤ 1/α,
this is immediate since |T ′′δ | ≤ d3. Now consider δ such that 1/α ≤ δ ≤ 1/4, and �x a
coordinate i ∈ [d3] \ T ′δ. Then, for any a ∈ Si, k ∈ [K], the expected value of ‖ψi,a,k(x) −
ψi,a,k(y)‖1 is l · 1

2(1 − (1 − 1
4k )

2k·δ) ≤ δl
2 . By Cherno� bound, ‖ψi,a,k(x) − ψi,a,k(y)‖1 < δl

with probability at least 1 − e−Ω(δl) ≥ 1 − d−3. By union bound, with probability at least
1 − d−1, for all a ∈ Si and k ∈ [K], we have 1

l ‖ψi,a,k(x) − ψi,a,k(y)‖1 < δ. Finally, using
a Cherno� bound over all i ∈ [d3] \ T ′δ, we can conclude that, for any δ′ ≥ δ, we have that
|T ′′δ′ | ≤ |T ′δ′ |+O(d3 · 1/d), with probability at least 1− e−Ω(d). Thus |T ′′δ | ≤ O(1

δ ) · Q·d
3

R . As
before, we obtain dpp,∞(ϕ̂(x), ϕ̂(y)) ≤ O((p − 1)−1Q). The bound extends immediately to
the case when Q ≤ R/α.

Now let's consider the case when Q = R. We need to argue that T ′′c = Ω(d3) for
some constant c = Ω(1). Then dpp,∞(ϕ̂(x), ϕ̂(y)) ≥ c2 · |T ′′c | · Rd3 = Ω(R). Indeed, consider
any i ∈ T ′1/2; note that T ′1/2 ≥ Ω(d3). Then, as in the previous paragraph, 1

l ‖ψi,a,k(x) −
ψi,a,k(y)‖1 ≥ cl with probability at least 1− 1/d3. By Cherno� bound over all i ∈ T ′1/2, we
conclude that T ′′c ≥ Ω(d3) − O(d3/d) with probability at least 1 − e−Ω(d2). The argument
extends to Q ≥ R standardly.

5.3 NN for the Ulam and EMD Distances
We now devise NN algorithms for the Ulam and EMD distances.

NN for Ulam distance. Our NN algorithm for Ulam distance follows by combining the
above two embeddings into product spaces with the NN algorithms for the product spaces
developed in Section 5.1. We will prove the following theorem.

Theorem 5.3.1. For every constant ε > 0 there is a randomized NN algorithm under
Ulamd that achieves O(ε−4 log log d · log log log d) approximation, with dO(1)nε query time
and dO(1)n1+ε space.

Proof. First we show how to obtain the NN algorithms for the host spaces of the two
Ulam embeddings, namely

⊕
(`p)p

⊕
`∞ `1 and

⊕
(`p)p `∞. While we could use the general

Theorem 5.1.3, we will design NN algorithms for these spaces a bit more carefully, in order
to get sharper bounds.
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Claim 5.3.2. For every k, l,m ∈ N, p ∈ [1, 2], and ε > 0, the space
⊕k

(`p)p

⊕l
`∞ `

m
1 admits

an NN algorithm achieving O(ε−1−2p(log logn)p) approximation, (klm)O(1)nε query time,
and (klm)O(1)n1+ε space.

Proof. We design an NN algorithm for the pth root of the desired space, namely,
⊕k

`p

⊕l
`∞ `

m
1

(which is a metric). Note that if obtain some approximation α for the latter metric, then
this is also an αp approximation for the desired space.

We start by noting that `m1 admits NN with approximation 1/ε, query time O(mnε) and
space O(mn1+ε) via the corresponding LSH-based NN algorithm from the LSH Library in
Section 3.5.1.

Next, we apply Theorem 5.1.2 to reduce the NN under
⊕k

`p

⊕l
`∞ `

m
1 to NN under⊕k

`∞
⊕l

`∞ `
m
1 =

⊕kl
`∞ `

m
1 . For the latter space

⊕kl
`∞ `

m
1 we use the max-product algorithm

of [Ind02b], namely Theorem 5.1.4.
Thus, we obtain the following parameters for NN under

⊕k
`p

⊕l
`∞ `

m
1 : α = O(ε−1/pε−2 log log n)

approximation, O((klm)O(1)n2ε logn) query time, andO((klm)O(1)n1+3ε) space/preprocessing.
The claim follows.

Also, for
⊕

(`p)p `∞ we obtain the following, better NN algorithm.

Claim 5.3.3. For every k, l ∈ N, p ∈ [1, 2], and ε > 0, the space
⊕k

(`p)p `l∞ admits an
NN scheme achieving approximation O(ε−1−p(log log kl)p), query time (kl)O(1)nε, and space
(kl)O(1)n1+ε.

Proof. The proof is very similar to the above one. We focus on the metric
⊕k

`p
`l∞. Using

Theorem 5.1.2, we reduce NN under this latter metric to NN under
⊕k

`∞ `
l∞ = `kl∞. For the

metric `kl∞, we use the original `∞ algorithm of [Ind98] (see Theorem 5.1.4), which gives an
approximation of O(log log kl).

It just remains to show how to combine the two embeddings for the Ulam distance with
the above two data structures. Let p = 1+ 1

log log log d , in which case (log log d)p = O(log log d),
and both embeddings have a distortion of (p− 1)−1 = O(log log log d).

We employ one of two di�erent data structures, depending on the parameters d and
n. If n ≤ dlog d, we apply Theorem 5.2.1 to embed Ulam into

⊕O(d)
(`p)p

⊕O(log d)
`∞ `

O(d)
1 , and

use the NN from Claim 5.3.2, achieving approximation O(ε−1−2p(log logn)p · log log log d) =
O(ε−4 log log d · log log log d) for the NN under Ulam distance.

If n > dlog d, then we use Lemma 5.2.2 with α = O((p − 1)−1 log log d) < O(
√

log d),
embedding Ulam into

⊕d3

(`p)p `m∞ for m = d
√

log d. Then we can apply Claim 5.3.3, which
achieves O(log log d) approximation for the

⊕d3

(`p)p `m∞ space. The overall approximation for
the NN under Ulam becomes O((1−p)−1 ·ε−1−p log log(d3m)) = O(ε−4 log log d·log log log d),
with query time O(d

√
log d)nε) ≤ O(nε+o(1)).

This completes the construction of the NN under Ulam distance and the proof of Theo-
rem 5.3.1.

NN for EMD. For EMD over [d]2, our techniques, together with an embedding from [Ind07],
yield NN with O(αε log log n) approximation, dO(1)nε query time and n1+ε · 2d1/α space
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for any desired α = α(d, n) > 1 and ε > 0. This improves upon the O(log d) approx-
imation of [Cha02, IT03, NS07], albeit at the cost of a much higher space. Our ap-
proximation also beats the Ω(

√
log d) non-embeddability lower bound into `1 as long as

n¿ exp
[
e
√

log d
]
[NS07].

Our general approach for designing NN under EMD follows the same principle as the
above one for Ulam: we embed EMD into a product space, and then show an NN algorithm
for the product space. For EMD, we use an existing embedding into a sum-product of smaller
EMDs that was already given in [Ind07] to obtain a near-linear time distance estimation
algorithm.

We note that, very recently, a somewhat better bound for the NN under EMD has been
obtained in [ADIW09]. The result of [ADIW09] also uses the same embedding into product
space, however, instead of designing an NN algorithm for it directly, that algorithm sketches
the product space and then uses the sketch-based full-indexing NN algorithm.

Let EMDd be the EMD metric over the two-dimensional grid [d]2.

Theorem 5.3.4 ([Ind07, Theorem 3.1]). For every d ≥ 1, α > 0, there exists a proba-
bilistic embedding η : EMDd →

⊕m
`1

EMDd1/α, where m = dO(1), with approximation O(α).
Namely, for every πA, πB ∈ EMDd, we have d1,EMD(η(πA), η(πB)) ≥ EMD(πA, πB), and
Eη [d1,EMD(η(πA), η(πB))] ≤ O(α) · EMD(πA, πB).

Using this embedding, and Theorem 5.1.2, we obtain the following corollary.

Corollary 5.3.5. For every constant ε > 0, and every d, n, α ≥ 1, there exists NN under
EMDd that has O(α · ε−2 log logn) approximation, with dO(1)nε query time, and n1+ε · 2d1/α

space.

Proof. The result follows by applying Theorem 5.1.2 to the above embedding η, together with
the algorithm from Theorem 5.1.4 for max-products, which is

⊕
`∞ EMDd1/α in our case.

Note that, for EMD of size [d1/α]2, we can easily construct a 2-approximation NN algorithm
with 2O(d2/α log d) space and O(d2/α) query time by �rst discretizing the distributions to
obtain multi-sets and then building a complete index on EMD over multi-sets. Rescaling α
yields the desired result.

5.4 Bibliographic Notes
Sub-linear time Ulam distance estimation. Our new Ulam �characterization� also
leads to new e�cient algorithms for the problem of sub-linear time distance estimation. In
this problem, we are given two strings, x and y we the goal is to compute (approximately)
the Ulam distance between x and y. We strive for a best possible algorithm, ideally one
running in sub-linear time, i.e., one that does not even need to read the strings entirely.
While this is generally not possible (imagine x and y di�er in one position), it becomes
possible whenever the distance R = ed(x, y) is relatively large. This case is of interest, for
example, as a (heuristic) algorithm used for �ltering in sequence alignment tools in order to
weed out sure non-matches (see, e.g., [CNBYM01]).

An application of the characterization from Lemma 5.2.3 gives an Õ(d/
√
R) time al-

gorithm for estimating Ulam distance between two strings of length d up to a O(1) factor
approximation. With more e�ort, in a later result [AN10], we further improve the time
bound to Õ(d/R +

√
d), which is an optimal bound up to poly-logarithmic factors. The

87



sublinear time algorithms for Ulam distance have found applications for the problem of sub-
linear distance estimation for a certain smoothed model of the (standard) edit distance; see
details in [AK08b].

Product spaces. Product spaces were studied in the context of developing NN algo-
rithms for other hard metrics in [Ind02b, Ind04]. An algorithm for NN under the max-
product

⊕k
`∞M is designed in [Ind02b], achieving O(c log log n) approximation using poly-

nomial space and sublinear query time, under the assumption that M itself has an NN
scheme achieving c-approximation with polynomial space and sublinear query time (see
Theorem 5.1.4). Although [Ind04] gave two algorithms for NN under the sum-product⊕k

`1
M, they are much less satisfying, since one requires very large storage and the other

obtains a rather large approximation. Our NN algorithm signi�cantly improves the NN for
sum-products from [Ind04], achieving performance comparable to that of max-products.

We note that the algorithms from [Ind04] were used to design algorithms for the NN
under the edit distance. However, they did not provide any embedding of the edit distance
into a simpler space, and thus do not fall under our approach of identifying richer host spaces.
There has also been work on streaming product metrics such as

⊕
`p
`q (see, [CM05b, JW09]).

Furthermore, product spaces, even iterated ones, are examined quite frequently in the study
of the geometry of Banach spaces, see, e.g., [JL01, Chapter 1].

NN under general edit distance. For edit distance in general strings, the two known
NN schemes with strongly sublinear query time achieve a constant factor approximation
using nd

ε storage for every �xed ε > 0 [Ind04], or 2O(
√

log d log log d) approximation using
(dn)O(1) storage [OR07]. The latter result is obtained by embedding the corresponding
metric into `1.
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Chapter 6

External Applications of Product
Spaces

In the previous chapter, we have shown how one can obtain new NN algorithms via em-
beddings into product spaces, yielding results that are impossible via embeddings into more
classical spaces. We now show that embeddings into product spaces lead to improved algo-
rithms for other applications, beyond the NN application.

We present two results based on embeddings into product spaces. The �rst result shows
that we can estimate the edit distance between two strings of length d up to a 2Õ(

√
log d)

approximation factor in near-linear time. The second result constructs a sketching algorithm
for the Ulam metric achieving constant approximation in poly-logarithmic space; further-
more, the sketch may be computed in the streaming model.

We now describe the results in more detail.

Computing edit distance in near-linear time. As previously mentioned, edit distance
is of fundamental importance in a number of �elds, such as computational biology (see more
on edit distance in Section 2.1).

The basic problem on edit distance is to compute the edit distance between two strings
of length d over some alphabet. The text-book dynamic programming runs in O(d2) time
(see, e.g., [CLRS01] and references therein). This was only slightly improved by Masek and
Paterson [MP80] to O(d2/ log2 d) time for constant-size alphabets1. Their result from 1980
remains the best algorithm to this date.

Since near-quadratic time is too costly when working on large datasets, practitioners
tend to rely on faster heuristics (see, e.g., [Gus97], [Nav01]). This leads to the question
of �nding fast algorithms with provable guarantees, speci�cally: can one approximate the
edit distance between two strings in near-linear time [Ind01a, BEK+03, BJKK04, BES06,
CPSV00, Cor03, OR07, KN06, KR06] ?

A linear-time
√
d-approximation algorithm immediately follows from the O(d + R2)-

time exact algorithm (see Landau, Myers, and Schmidt [LMS98]), where R is the edit
distance between the input strings. Subsequent research improved the approximation �rst
to d3/7, and then to d1/3+o(1), due to, respectively, Bar-Yossef, Jayram, Krauthgamer, and
Kumar [BJKK04], and Batu, Ergün, and Sahinalp [BES06].

1The result has been only recently extended to arbitrarily large alphabets by Bille and Farach-
Colton [BFC08] with a O(log log d)2 factor loss in time.
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A sublinear time algorithm was obtained by Batu, Ergün, Kilian, Magen, Raskhodnikova,
Rubinfeld, and Sami [BEK+03]. Their algorithm distinguishes the cases when the distance
is O(d1−ε) vs. Ω(d) in Õ(d1−2ε + d(1−ε)/2) time for any ε > 0. Note that their algorithm
cannot distinguish distances, say, O(d0.1) vs. Ω(d0.9).

On a related front, in 2005, the breakthrough result of Ostrovsky and Rabani gave an
embedding of the edit distance metric into `1 with 2Õ(

√
log d) distortion [OR07]. This result

vastly improved related applications, namely NN and sketching. However, it did not have
implications for computing edit distance between two strings in sub-quadratic time. In
particular, to the best of our knowledge it is not known whether it is possible to compute
their embedding in less than quadratic time.

Prior to our result, the best approximation remained the 2006 result of Batu, Ergün,
and Sahinalp [BES06], achieving d1/3+o(1) approximation. Even for d2−ε time, their approx-
imation is dε/3+o(1).

Here, we show how to obtain 2Õ(
√

log d) approximation in near-linear time. This is the
�rst sub-polynomial approximation algorithm for computing the edit distance between two
strings running in strongly subquadratic time. The main tool used to obtain our new
algorithm is embeddings into min-product spaces (de�ned similarly to the max-product
spaces).

Sketching algorithms for the Ulam distance. Our second application of product
spaces ideas is to designing sketching and streaming algorithms for computing Ulam dis-
tance (see de�nition and motivation of the Ulam distance in Section 2.1). As de�ned in
Section 1.3.2, the sketch of a point x is a (randomized) mapping of x into a short ��nger-
print� sk(x) with the following property. For a pair of points x and y, the sketches sk(x)
and sk(y) are su�cient to distinguish (with high probability) between the case when x, y
are at distance d(x, y) ≤ R, and the case when d(x, y) > αR, for an approximation factor
α > 1 and a threshold parameter R ∈ R+. The main parameter of a sketching algorithm is
its sketch size, the bit length of sk(x).

The sketching model is viewed as a basic computational primitive in massive data
sets [AMS99, BBD+02, FM85]. For example, sketches of size s for an approximation α
imply NN with space nO(s) with approximation α.

Here, we design a sketching algorithm for the Ulammetric that achievesO(1)-approximation
using a sketch of size logO(1) d. This approximation is a signi�cant improvement over
the O(log d) approximation that follows immediately from the `1-embedding of Ulam met-
ric [CK06]. Our sketching result is tight up to the exponent of the logarithm. Speci�cally, it
is known that O(1)-approximation requires sketch size to be Ω(log d / log log d) (see Chap-
ter 7 and [AJP10]).

Furthermore, we show that our sketch is computable in the data stream model, thus
answering an open question posed in [AJKS02, Section 6] on computing Ulam distance in a
stream. Speci�cally, we can compute the sketch of a string P even if we have a sequential
access to elements P [1], P [2], . . . P [d], using a total of polylog(d) space. To put our result
in a perspective, for the problem of estimating the distance between two permutations
interleaved in a stream, [AJKS02] give an O(

√
d log d)-space streaming algorithm for a 1+ ε

approximation, when the distance is the number of inversions (Kendall tau distance).
Our sketching algorithm is based on the Ulam embeddings into product spaces from the

previous chapter.
The results from this chapter have previously appeared in [AO09, AIK09].
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6.1 Computing Edit Distance in Near-Linear Time
In this section, we design the following algorithm.

Theorem 6.1.1. The edit distance between two strings x, y ∈ {0, 1}d can be computed up
to a factor of 2O(

√
log d log log d) in d · 2O(

√
log d log log d) time.

This result immediately extends to two more related applications. The �rst application
is to sublinear-time algorithms. In this scenario, the goal is to compute the distance between
two strings x, y of the same length d in o(d) time. For this problem, for any α < β ≤ 1, we
can distinguish distance O(dα) from distance Ω(dβ) in O(dα+2(1−β)+o(1)) time.

The second application is to the problem of pattern matching with errors. In this ap-
plication, one is given a text T of length N and a pattern P of length d, and the goal is
to report the substring of T that minimizes the edit distance to P . Our result immediately
gives an algorithm for this problem running in O(N logN) · 2Õ(

√
log d) time with 2Õ(

√
log d)

approximation.
Before proceeding to the proof of Theorem 6.1.1, we will describe the general approach

to prove our theorem, as well as review the Ostrovsky�Rabani embedding [OR07], which is
also instrumental for our algorithm.

6.1.1 Proof overview
We will use the following two metrics. The �rst one is a variant of EMD over high-
dimensional spaces. The second one is the (standard) notion of a graph metric.

We de�ne thresholded Earth-Mover Distance, denoted TEMDt for a �xed threshold t > 0,
as the following distance on subsets A and B of size s ∈ N of some metric (M, dM ):

TEMDt(A,B) = 1
s min
τ :A→B

∑

a∈A
min

{
dM (a, τ(a)), t

}
(6.1)

where τ ranges over all bijections between sets A and B. TEMD∞ is the simple Earth-
Mover Distance (EMD), as de�ned in Section 2.1. We will always use t = s and thus drop
the subscript t; i.e., TEMD = TEMDs.

A graph (tree) metric is a metric induced by a connected weighted graph (tree) G, where
the distance between two vertices is the length of the shortest path between them. We
denote by an arbitrary tree metric by TM. We also slightly abuse the notation by writing⊕k

min TM to denote the min-product of k tree metrics (that could di�er from each other).
We now describe the intuition behind our new algorithm. Our starting point is the

Ostrovsky-Rabani embedding [OR07]. For strings x, y, as well as for all substrings σ of
speci�c lengths, we compute some vectors vσ living in low-dimensional `1 such that the
distance between two such vectors approximates the edit distance between the associated
(sub-)strings. In this respect, these vectors can be seen as an embedding of the considered
strings into `1 of polylogarithmic dimension. Unlike the Ostrovsky-Rabani embedding, how-
ever, our embedding is non-oblivious in the sense that the vectors vσ are computed given
all the relevant strings σ. In contrast, Ostrovsky and Rabani give an oblivious embedding
φd : {0, 1}d → `1 such that ‖φd(x)−φd(y)‖1 approximates ed(x, y). However, the oblivious-
ness comes at a high price: their embedding requires a high dimension, of order Ω(d), and
a high computation time, of order Ω(d2) (even when allowing randomized embedding, and
a constant probability of a correctness). We further note that reducing the dimension of
this embedding seems unlikely as suggested by the results on impossibility of dimensionality
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reduction within `1 [CS02, BC03, LN04]. Nevertheless, the general recursive approach of
the Ostrovsky-Rabani embedding is the starting point of the algorithm from this paper.

The heart of our algorithm is a near-linear time algorithm that, given a sequence of low-
dimensional vectors v1, . . . vd ∈ `1 and an integer s < d, constructs new vectors q1, . . . qm ∈
`
O(log2 d)
1 , where m = d − s + 1, with the following property. For all i, j ∈ [m], the value
‖qi− qj‖1 approximates the TEMD distance between the sets Ai = {vi, vi+1, . . . vi+s−1} and
Aj = {vj , vj+1, . . . vj+s−1}. To accomplish this (non-oblivious) embedding, we proceed in
two stages. First, we embed (obliviously) the TEMD metric into a min-product of `1's of low
dimension. In other words, for a set A, we associate a matrix L(A), of polylogarithmic size,
such that the TEMD distance between sets A and B is approximated by minr

∑
t |L(A)rt−

L(B)rt|. Min-products help us simultaneously on two fronts: one is that we can apply a weak
dimensionality reduction in `1, using the Cauchy projections, and the second one enables us
to accomplish a low-dimensional TEMD embedding itself. Our embedding L(·) is not only
low-dimensional, but it is also linear, allowing us to compute matrices L(Ai) in near-linear
time by performing one pass over the sequence v1, . . . vn. Linearity is crucial here as even
the total size of Ai's is

∑
i |Ai| = (d − s + 1) · s, which can be as high as Ω(d2), and so

processing each Ai separately is infeasible.
In the second stage, we show how to embed a set of d points lying in a low-dimensional

min-product of `1's back into a low-dimensional `1 with only small distortion. We note
that this is not possible in general, with any bounded distortion, because such a set of
points does not even form a metric. We show that this is possible when we assume that the
semi-metric induced by the set of points approximates some metric (in our case, the set of
points approximates the initial TEMD metric). The embedding from this stage starts by
embedding a min-product of `1's into a low-dimensional min-product of tree metrics. We
further embed the latter into an d-point metric supported by the shortest-path metric of a
sparse graph. Finally, we observe that we can implement Bourgain's embedding on a sparse
graph metric in near-linear time. These last two steps make our embedding non-oblivious.

6.1.2 Overview of the Ostrovsky�Rabani embedding
We now brie�y describe the embedding of Ostrovsky and Rabani [OR07]. Some notions
introduced here are used in our algorithm described in the next section.

The embedding of Ostrovsky and Rabani is recursive. For a �xed d, they construct the
embedding of edit distance over strings of length d using the embedding of edit distance over
strings of shorter lengths l ≤ d/2

√
log d log log d. We denote their embedding of length-d strings

by φd : {0, 1}d → `1, and let dOR
d be the resulting distance: dOR

d (x, y) = ‖φd(x)−φd(y)‖1. For
two strings x, y ∈ {0, 1}d, the embedding is such that dOR

d = ‖φd(x)−φd(y)‖1 approximates
an �idealized� distance d∗d(x, y), which itself approximates the edit distance between x and
y.

Before describing the �idealized� distance d∗d, we introduce some notation. Partition x
into b = 2

√
log d log log d blocks called x(1), . . . x(b) of length l = d/b. Next, �x some j ∈ [b]

and s ≤ l. We consider the set of all substrings of x(j) of length l − s+ 1, embed each one
recursively via φl−s+1, and de�ne Ssj (x) ⊂ `1 to be the set of resulting vectors (note that
|Ssj | = s). Formally,

Ssj (x) =
{
φl−s+1(x[(j − 1)l + z : (j − 1)l + z + l − s]) | z ∈ [s]

}
.

Taking φl−s+1 as given (and thus also the sets Ssj (x) for all x), de�ne the new �idealized�
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distance d∗d approximating the edit distance between strings x, y ∈ {0, 1}d as

d∗d(x, y) = c
b∑

j=1

∑

f∈N
s=2f≤l

TEMD(Ssj (x), S
s
j (y)) (6.2)

where TEMD is the thresholded Earth-Mover Distance (de�ned in Eqn. (6.1)), and c is a
su�ciently large normalization constant (c ≥ 12 su�ces). Using the terminology from the
preliminaries, the distance function d∗d can be viewed as the distance function of the sum-
product of TEMDs, i.e.,

⊕b
`1

⊕O(log d)
`1

TEMD, and the embedding into this product space
is attained by the natural identity map (on sets Ssj ).

The key idea is that the distance d∗d(x, y) approximates edit distance well, assuming that
φl−s+1 approximates edit distance well, for all s = 2f where f ∈ {1, 2, . . . blog2 lc}. Formally,
Ostrovsky and Rabani show that:
Fact 6.1.2 ([OR07]). Fix d and b < d, and let l = d/b. Let Dd/b be an upper bound on
distortion of φl−s+1 viewed as an embedding of edit distance on strings {x[i : i+ l − s], y[i :
i+ l − s] | i ∈ [d− l + s]}, for all s = 2f where f ∈ {1, 2, . . . blog2 lc}. Then,

ed(x, y) ≤ d∗d(x, y) ≤ ed(x, y) · (Dd/b + b
) ·O(log d).

To obtain a complete embedding, it remains to construct an embedding approximating
d∗d up to a small factor. In fact, if one manages to approximate d∗d up to a poly-logarithmic
factor, then the �nal distortion comes out to be 2O(

√
log d log log d). This follows from the

following recurrence on the distortion factor Dd. Suppose φd is an embedding that approx-
imates d∗d up to a factor logO(1) d. Then, if Dd is the distortion of φd (as an embedding of
edit distance), then Fact 6.1.2 immediately implies that, for b = 2

√
log d log log d,

Dd ≤ Dd/2
√

log d log log d · logO(1) d+ 2O(
√

log d log log d).

This recurrence solves to Dd ≤ 2O(
√

log d log log d) as proven in [OR07].
Concluding, to complete a step of the recursion, it is su�cient to embed the metric

given by d∗d into `1 with a polylogarithmic distortion. Recall that d∗d is the distance of the
metric

⊕b
`1

⊕O(log d)
`1

TEMD, and thus, one just needs to embed TEMD into `1. Indeed,
Ostrovsky and Rabani show how to embed a relaxed (but su�cient) version of TEMD into
`1 with O(log d) distortion, yielding the desired embedding φd, which approximates d∗d up
to a O(log d) factor at each level of recursion. We note that the required dimension is Õ(d).

6.1.3 Main algorithm: proof of Theorem 6.1.1
We now describe our general approach. Fix x ∈ {0, 1}d. For each substring σ of x, we
construct a low-dimensional vector vσ such that, for any two substrings σ, τ of the same
length, the edit distance between σ and τ is approximated by the `1 distance between the
vectors vσ and vτ . We note that the embedding is non-oblivious: to construct vectors vσ we
need to know all the substrings of x in advance (akin to Bourgain's embedding guarantee).
We also note that computing such vectors is enough to solve the problem of approximating
the edit distance between two strings, x and y. Speci�cally, we apply this procedure to the
string x′ = x ◦ y, the concatenation of x and y, and then compute the `1 distance between
the vectors corresponding to x and y, substrings of x′.
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More precisely, for each length m ∈W , for some setW ⊂ [d] speci�ed later, and for each
substring x[i : i+m− 1], where i = 1, . . . d−m+ 1, we compute a vector v(m)

i in `α1 , where
α = 2Õ(

√
log d). The construction is inductive: to compute vectors v(m)

i , we use vectors v(l)
i

for l¿ m and l ∈W . The general approach of our construction is based on the analysis of
the recursive step of Ostrovsky and Rabani, described in Section 6.1.2. In particular, our
vectors v(m)

i ∈ `1 will also approximate the d∗m distance (given in Eqn. (6.2)) with sets Ssi
de�ned using vectors v(l)

i with l¿ m.
The main challenge is to process one level (vectors v(m)

i for a �xedm) in near-linear time.
Besides the computation time itself, a fundamental di�culty in applying the approach of
Ostrovsky and Rabani directly is that their embedding would give a much higher dimension
α, proportional to Õ(m). Thus, if we were to use their embedding, even storing all the
vectors would take quadratic space.

To overcome this last di�culty, we settle on non-obliviously embedding the set of sub-
strings x[i : i + m − 1] for i ∈ [d − m + 1] under the �ideal� distance d∗m with logO(1) d
distortion (formally, under the distance d∗m from Eqn. (6.2), when Ssj (x[i : i + m − 1]) ={
v

(l−s+1)
i+(j−1)l+z−1 | z ∈ [s]

}
for l = m/2

√
log d log log d). Existentially, we know that there exist

vectors v(m)
i ∈ RO(log2 d), such that ‖v(m)

i − v(m)
j ‖1 approximate d∗m(x[i : i + m − 1], x[j :

j + m − 1]) for all i, j � this follows by the standard Bourgain's embedding [Bou85]. We
show that we can also compute these v(m)

i 's e�ciently for all i ∈ [d−m+ 1], albeit with an
additional polylogarithmic loss in approximation.

The main building block is the following theorem. It shows how to approximate the
TEMD distance for the desired sets Ssj .

Theorem 6.1.3. Let n ∈ N and s ∈ [n]. Let v1, . . . vn be vectors in {−M, . . .M}α, where
M = nO(1) and α ≤ n. De�ne sets Ai = {vi, vi+1, . . . vi+s−1} for i ∈ [n− s+ 1].

Let t = O(log2 n). We can compute (randomized) vectors qi ∈ `t1 for i ∈ [n− s+ 1] such
that for any i, j ∈ [n− s+ 1], with high probability, we have

TEMD(Ai, Aj) ≤ ‖qi − qj‖1 ≤ TEMD(Ai, Aj) · logO(1) n.

Furthermore, computing all vectors qi takes Õ(nα) time.

To map the statement of this theorem to the above description, we mention that, for
each l = m/b for m ∈ W , we apply the theorem to vectors

(
v

(l−s+1)
i

)
i∈[d−l+s]

for each

s = 1, 2, 4, 8, . . . 2blog2 lc, setting n = d− l + s.
We prove Theorem 6.1.3 in later sections. Once we have Theorem 6.1.3, it becomes

relatively straight-forward (albeit a bit technical) to prove the main theorem, Theorem 6.1.1.
We complete the proof of Theorem 6.1.1 next, assuming Theorem 6.1.3.

Proof of Theorem 6.1.1. We start by appending y to the end of x; we will work with the
new version of x only. Let b = 2

√
log d log log d and α = O(b log3 d). We construct vectors

v
(m)
i ∈ Rα for m ∈ W , where W ⊂ [d] is a carefully chosen set of size 2O(

√
log d log log d).

Namely, W is the minimal set such that: d ∈ W , and, for each i ∈ W with i ≥ b, we have
that i/b − 2j + 1 ∈ W for all integers j ≤ blog2 i/bc. It is easy to show by induction that
the size of W is 2O(

√
log d log log d).

Fix an m ∈W such that m ≤ b2 = 22
√

log d log log d. We de�ne the vector v(m)
i to be equal

to hm(x[i : i +m − 1]), where hm : {0, 1}m → {0, 1}α is a randomly chosen function. It is
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readily seen that ‖v(m)
i − v(m)

j ‖1 approximates ed(x[i : i + m − 1], x[j : j + m − 1]) up to
b2 = 22

√
log d log log d approximation factor, for each i, j ∈ [d−m+ 1].

Now consider m ∈ W such that m > b2. Let l = m/b. First we construct vectors
approximating TEMD on sets Am,si =

{
v

(l−s+1)
i+z | z = 0, . . . s− 1

}
, where s = 1, 2, 4, 8, . . . , l

and i ∈ [d − l + s]. In particular, for a �xed s ∈ [l] equal to a power of 2, we apply
Theorem 6.1.3 to the set of vectors

(
v

(l−s+1)
i

)
i∈[d−l+s]

obtaining vectors
(
q
(m,s)
i

)
i∈[d−l+1]

.

Theorem 6.1.3 guarantees that, for each i, j ∈ [d − l + 1], the value ‖q(m,s)i − q
(m,s)
j ‖1

approximates TEMD(Am,si , Am,sj ) up to a factor of logO(1) d. We can then use these vectors
q
(m,s)
i to obtain the vectors v(m)

i ∈ Rα that approximate the �idealized� distance d∗m on
substrings x[i : i + m − 1], for i ∈ [d − m + 1]. Speci�cally, we let the vector v(m)

i be a
concatenation of vectors q(m,s)i+(j−1)l, where j ∈ [b], and s goes over all powers of 2 less than l:

v
(m)
i =

(
q
(m,s)
i+(j−1)l

)
j∈[b]

s=2f≤l,f∈N
.

Then, the vectors v(m)
i approximate the distance d∗m (given in Eqn. (6.2)) up to a logO(1) d

approximation factor, with the sets Ssj (x[i : i+m− 1]) taken as

Ssj (x[i : i+m− 1]) = Am,si+(j−1)l =
{
v

(l−s+1)
i+(j−1)l+z | z = 0, . . . s− 1

}
,

for i ∈ [d−m+ 1] and j ∈ [b].
The algorithm �nishes by outputting ‖v(d)

1 − v(d)
d+1‖, which is an approximation to the

edit distance between x[1 : d] and x[d + 1 : 2d] = y. The total running time is O(|W | · d ·
bO(1) · logO(1) d) = d · 2O(

√
log d log log d).

It remains to analyze the resulting approximation. Let Dm be the approximation
achieved by vectors v(k)

i ∈ `1 for substrings of x of lengths k, where k ∈ W and k ≤ m.
Then, using Fact 6.1.2 and the fact that vectors v(m)

i ∈ `1 approximate d∗m, we have that

Dm ≤ logO(1) d ·
(
Dm/b + 2

√
log d log log d

)
.

Since the total number of recursion levels is bounded by logb d =
√

log d
log log d , we deduce

that Dd = 2O(
√

log d log log d).

6.1.4 Proof of Theorem 6.1.3
The proof of Theorem 6.1.3 proceeds in two stages. In the �rst stage we show an embedding
of the TEMD metric into a low-dimensional space. Speci�cally, we show an (oblivious)
embedding of TEMD into a min-product of `1. Recall that the min-product of `1, denoted⊕l

min `
k
1, is a semi-metric where the distance between two l-by-k vectors x, y ∈ Rl×k is

dmin,1(x, y) = mini∈[l]

{∑
j∈[k] |xi,j − yi,j |

}
. Our min-product of `1's has dimensions l =

O(logn) and k = O(log3 n). The min-product can be seen as helping us on two fronts:
one is the embedding of TEMD into `1 (of initially high-dimension), and another is a weak
dimensionality reduction in `1, using Cauchy projections. Both of these embeddings are
of the following form: consider a randomized embedding f into (standard) `1 that has no
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contraction (w.h.p.) but the expansion is bounded only in the expectation (as opposed to
w.h.p.). To obtain a �w.h.p.� expansion, one standard approach is to sample f many times
and concentrate the expectation. This approach, however, will necessitate a high number of
samples of f , and thus yield a high �nal dimension. Instead, the min-product allows us to
take only O(log n) independent samples of f .

We note that our embedding of TEMD into min-product of `1, denoted λ, is linear in
the sets A: λ(A) =

∑
a∈A λ({a}). The linearity allows us to compute the embedding of sets

Ai in a streaming fashion: the embedding of Ai+1 is obtained from the embedding of Ai
with logO(1) n additional processing.

In the second stage, we show that, given a set of n points in min-product of `1's, we can
(non-obliviously) embed these points into low-dimensional `1 with O(logn) distortion. The
time required is near-linear in n and the dimensions of the min-product of `1's.

To accomplish this step, we start by embedding the min-product of `1's into a min-
product of tree metrics. Next, we show that n points in the low-dimensional min-product
of tree metrics can be embedded into a graph metric supported by a sparse graph. We
note that this is in general not possible, with any (even non-constant) distortion. We show
that this is possible when we assume that our subset of the min-product of tree metrics
approximates some actual metric (in our case, the min-product approximates the TEMD
metric). Finally, we observe that we can implement Bourgain's embedding in near-linear
time on a sparse graph metric.

We then conclude with the proof of Theorem 6.1.3.

Embedding EMD into min-product of `1
In the next lemma, we show how to embed TEMD into a min-product of `1's of low di-
mension. Moreover, when the sets Ai are obtained from a sequence of vectors v1, . . . vn, by
taking Ai = {vi, . . . vi+s−1}, we can compute the embedding in near-linear time.

Lemma 6.1.4. Fix n,M ∈ N and s ∈ [n]. Suppose we have n vectors v1, . . . vn in
{−M, . . .M}α for some α ≤ n. Consider the sets Ai = {vi, vi+1, . . . vi+s−1}, for i ∈
[n− s+ 1].

Let k = O(log3 n). We can compute (randomized) vectors qi ∈ `k1 for i ∈ [n− s+ 1] such
that, for any i, j ∈ [n− s+ 1] we have that

• Pr
[
‖qi − qj‖1 ≤ TEMD(Ai, Aj) ·O(log2 n)

]
≥ 0.1 and

• ‖qi − qj‖1 ≥ TEMD(Ai, Aj) w.h.p.

The computation time is Õ(nα).
Thus, we can embed the TEMD metric over sets Ai into

⊕l
min `

k
1, for l = O(logn), such

that the distortion is O(log2 n) w.h.p. The computation time is Õ(nα).

Proof. First, we show how to embed TEMD metric over the sets Ai into `1 of dimension
MO(α) ·O(log n). For this purpose, we use a slight modi�cation of the embedding of [AIK08]
(it can also be seen as a strengthening of the TEMD embedding of Ostrovsky and Rabani).

The embedding of [AIK08] constructs m = O(log s) embeddings ψi, each of dimension
h = MO(α), and then the �nal embedding is just the concatenation ψ = ψ1 ◦ ψ2 . . . ◦ ψm.
For i = 1, . . .m, we impose a randomly shifted grid of side-length Ri = 2i−2. Then ψi has
a coordinate for each cell and the value of that coordinate, for a set A, equals the number
of points from A falling into the corresponding cell times Ri. Now, if we scale ψ up by
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Θ(1
s logn), Theorem 3.1 from [AIK08] says that the vectors q′i = ψ(Ai) satisfy the condition

that, for any i, j ∈ [n− s+ 1], we have:

• E
[
‖q′i − q′j‖1

]
≤ TEMD(Ai, Aj) ·O(log2 n) and

• ‖q′i − q′j‖1 ≥ TEMD(Ai, Aj) w.h.p.

Thus, the vectors q′i satisfy the promised properties except they have a high dimension.
To reduce the dimension of q′i's, we apply a weak `1 dimensionality reduction via 1-stable

(Cauchy) projections. Namely, we pick a random matrix P of size k = O(log3 n) by mh,
the dimension of ψ, where each entry is distributed according to the Cauchy distribution,
which has probability distribution function f(x) = 1

π · 1
1+x2 . Now de�ne qi = P · q′i ∈ `k1.

Standard properties of the `1 dimensionality reduction guarantee that the vectors qi satisfy
the properties promised in the lemma statement, after an appropriate rescaling (see Theorem
5 of [Ind06] with ε = 1/2, γ = 1/6, and δ = n−O(1)).

It remains to show that we can compute the vectors qi in Õ(nα) time. For this, we note
that the resulting embedding P ·ψ(A) is linear, namely P ·ψ(A) =

∑
a∈A P ·ψ({a}). Thus,

we can use the idea of a sliding window over the stream v1, . . . vn to compute qi = P ·ψ(Ai)
iteratively. Speci�cally, note that

qi+1 = P · ψ(Ai+1) = P · ψ(Ai ∪ {vi+s} \ {vi}) = qi + P · ψ({vi+s})− P · ψ({vi}).

Since we can compute P ·ψ({vi}), for any i, in α · logO(1) n time, we conclude that the total
time to compute qi's is O(nα · logO(1) n).

Finally, we show how we obtain an e�cient embedding of TEMD into min-product of
`1's.

We apply the above procedure l = O(logn) times. Let q(z)i be the resulting vectors, for
i ∈ [n − s + 1] and z ∈ [l]. The embedding of a set Ai is the concatenation of the vectors
q
(z)
i , namely Qi = (q(1)

i , q
(2)
i , . . . q

(l)
i ) ∈ ⊕l

min `
k
1. The Cherno� bound implies that w.h.p.,

for any i, j ∈ [n− s+ 1], we have that

dmin,1(Qi, Qj) = min
z∈[l]
‖q(z)i − q(z)j ‖ ≤ TEMDs(Ai, Aj) ·O(log2 n).

Also, dmin,1(Qi, Qj) ≥ TEMDs(Ai, Aj) w.h.p. trivially. Thus the vectors Qi are an embed-
ding of the TEMD metric on Ai's into

⊕l
min `

k
1 with distortion O(log2 n) w.h.p.

Embedding of min-product of `1 into low-dimensional `1
In this section, we show that n points Q1, . . . Qn in the semi-metric space

⊕l
min `

k
1 can be

embedded into `1 of dimension O(log2 n) with distortion logO(1) n. The embedding works
under the assumption that the semi-metric onQ1, . . . Qn is a logO(1) n approximation of some
metric. We start by showing that we can embed a min-product of `1's into a min-product
of tree metrics.

Lemma 6.1.5. Fix n,M ∈ N such thatM = nO(1). Consider n vectors v1, . . . vn in
⊕l

min `
k
1,

for some l, k ∈ N, where each coordinate of each vi lies in the set {−M, . . . ,M}. We can
embed these vectors into a min-product of O(l · log2 n) tree metrics, i.e.,

⊕O(l log2 n)
min TM,

incurring distortion O(logn) w.h.p. The computation time is Õ(n · kl).
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Proof. We consider all thresholds 2t, for t ∈ {0, 1, . . . , logM}. For each threshold 2t, and
for each coordinate of the min-product (i.e., `k1), we create O(log n) tree metrics. Each tree
metric is independently created as follows. We again use randomly shifted grids. Speci�cally,
we de�ne a hash function h : `k1 → Zk as

h(x1, . . . , xk) =
(⌊

x1 + u1

2t

⌋
,

⌊
x2 + u2

2t

⌋
, . . . ,

⌊
xk + uk

2t

⌋)
,

where each ut is chosen at random from [0, 2t). We create each tree metric so that the nodes
corresponding to the points hashed by h to the same value are at distance 2t (this creates
a set of stars), and each pair of points that are hashed to di�erent values are at distance
2Mk (we connect the roots of the stars). It is easy to verify that for two points x, y ∈ `k1,
the following holds

1− ‖x− y‖1
2t

≤ Pr
h

[h(x) = h(y)] ≤ e−‖x−y‖1/2t
.

By the Cherno� bound, if x, y ∈ `k1 are at distance at most 2t for some t, they will be at
distance at most 2t+1 in one of the tree metrics with high probability.

On the other hand, let vi and vj be two input vectors at distance greater than 2t. The
probability that they are at distance smaller than 2t/c log n in any of the O(log2 n) tree
metrics, is at most n−c+1 for any c > 0, by union bound.

Therefore, we multiply the weights of all edges in all trees by O(logn) to achieve a proper
(non-contracting) embedding.

We now show that we can embed a subset of the min-product of tree metrics into a graph
metric, assuming the subset is close to a metric.

Lemma 6.1.6. Consider a semi-metricM = (X, ξ) of size n in
⊕l

min TM for some l ∈ N,
where each tree metric in the product is of size O(n). Suppose M is a γ-near metric (i.e.,
it is embeddable into a metric with γ distortion). Then we can embed M into a connected
weighted graph with O(nl) edges with distortion γ in O(nl) time.

Proof. We consider l separate trees each on O(n) nodes, corresponding to each of l di-
mensions of the min-product. We identify the nodes of trees that correspond to the same
point in the min-product, and collapse them into a single node. The graph we obtain
has at most O(nl) edges. Denote the shortest-path metric it spans with M′ = (V, ρ),
and denote our embedding with φ : X → V . Clearly, for each pair u, v of points in X,
we have ρ(φ(u), φ(v)) ≤ ξ(u, v). If the distance between two points shrinks after em-
bedding, then there is a sequence of points w0 = u, w1, . . . , wk−1, wk = v such that
ρ(φ(u), φ(v)) = ξ(w0, w1) + ξ(w1, w2) + · · · + ξ(wk−1, wk). Because M is a γ-near metric,
there exists a metric ξ? : X ×X → [0,∞), such that ξ?(x, y) ≤ ξ(x, y) ≤ γ · ξ?(x, y), for all
x, y ∈ X. Therefore,

ρ(φ(u), φ(v)) =
k−1∑

i=0

ξ(wi, wi+1) ≥
k−1∑

i=0

ξ?(wi, wi+1) ≥ ξ?(w0, wk) = ξ?(u, v) ≥ ξ(u, v)/γ.

Hence, it su�ces to multiply all edge weights of the graph by γ to achieve a non-contractive
embedding. Since there was no expansion before, it is now bounded by γ.
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We now show how to embed the shortest-path metric of a graph into a low dimensional
`1-space in time near-linear in the graph size. For this purpose, we implement Bourgain's
embedding [Bou85] in near-linear time. We use the following version of Bourgain's embed-
ding, which follows from the analysis in [Mat02].

Lemma 6.1.7 (Bourgain's embedding [Mat02]). Let M = (X, ρ) be a �nite metric on
n points. There is an algorithm that computes an embedding f : X → `t1 of M into `t1
for t = O(log2 n) such that, with high probability, for each u, v ∈ X, we have ρ(u, v) ≤
‖f(u)− f(v)‖1 ≤ ρ(u, v) ·O(log n).

Speci�cally, for coordinate i ∈ [k] of f , the embedding associates a nonempty set Ai ⊆ X
such that f(u)i = ρ(u,Ai) = mina∈A ρ(u, a). Each Ai is samplable in linear time.

The running time of the algorithm is O(g(n) · log2 n), where g(n) is the time necessary
to compute the distance of all points to a given �xed subset of points.

Lemma 6.1.8. Consider a connected graph G = (V,E) on n nodes with m edges and a
weight function w : E → [0,∞). There is a randomized algorithm that embeds the shortest
path metric of G into `O(log2 n)

1 with O(logn) distortion, with high probability, in O(m log3 n)
time.

Proof. Let ψ : V → `
O(log2 n)
1 be the embedding given by Lemma 6.1.7. For any nonempty

subset A ⊆ V , we can compute ρ(v,A) for all v ∈ V by Dijkstra's algorithm in O(m log n)
time. The total running time is thus O(m log3 n).

Finalization of the proof of Theorem 6.1.3

We �rst apply Lemma 6.1.4 to embed the sets Ai into
⊕O(logn)

min `k1 with distortion at most
O(log2 n) with high probability, where k = O(log3 n). We write vi, i ∈ [n− s+1], to denote
the embedding of Ai. Note that the TEMD distance between two di�erent Ai's is at least
1/s ≥ 1/n, and so is the distance between two di�erent vi's. We multiply all coordinates of
vi's by 2kn = Õ(n) and round them to the nearest integer. This way we obtain vectors v′i
with integer coordinates in {−2knM − 1, . . . , 2knM + 1}. Consider two vectors vi and vj .
Let D be their distance, and let D′ be the distance between the corresponding v′i and v′j .
We claim that knD ≤ D′ ≤ 3knD, and it su�ces to show this claim for vi 6= vj , in which
case we know that D ≥ 1/n. Each coordinate of the min-product is `k1, and we know that
in each of the coordinates the distance is at least D. Consider a given coordinate of the
min-product, and let d and d′ be the distance before and after the scaling and rounding,
respectively. On the one hand,

d′

d
≥ 2knd− k

d
≥ 2kn− k

D
≥ 2kn− kn = kn,

and on the other,
d′

d
≤ 2knd+ k

d
≤ 2kn+

k

D
≤ 2kn+ kn = 3kn.

Therefore, in each coordinate, the distance gets scaled by a factor in the range [kn, 3kn].
We now apply Lemma 6.1.5 to v′i's and obtain their embedding into a min-product of tree
metrics. Then, we divide all distances in the trees by kn, and achieve an embedding of
vi's into a min-product of trees with distortion at most 3 times larger than that implied by
Lemma 6.1.5, which is O(logn).
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The resulting min-product of tree metrics need not be a metric, but it is a γ-near metric,
where γ = O(log3 n) is the expansion incurred so far. We therefore embed the min-product
of tree metrics into the shortest-path metric of a weighted graph by using Lemma 6.1.6 with
expansion at most γ. Finally, we embed this metric into a low dimensional `1 metric space
with distortion O(log2 n) by using Lemma 6.1.8.

6.1.5 Extensions
We now present two extensions of our main algorithm: sublinear-time approximation of edit
distance, and approximate pattern matching under edit distance.

Sublinear-time approximation. We now present a sublinear-time algorithm for distin-
guishing pairs of strings with small edit distance from pairs with large edit distance. Let x
and y be the two strings. The algorithm partitions them into blocks x̃i and ỹi of the same
length such that x = x̃1 . . . x̃b and y = ỹ1 . . . ỹb. Then it compares x̃i to ỹi for a number of
random i. If it �nds a very di�erent pair of blocks x̃i to ỹi, the distance between x and y is
large. Otherwise, the edit distance between x and y is likely to be small. Our edit distance
algorithm is used for approximating the distance between speci�c x̃i and ỹi.

Theorem 6.1.9. Let α and β be two constants such that 0 ≤ α < β ≤ 1. There is
an algorithm that distinguishes pairs of strings with edit distance O(dα) from those with
distance Ω(dβ) in time dα+2(1−β)+o(1).

Proof. Let f(d) = 2O(
√

log d log log d) be a non-decreasing function that bounds the approxi-
mation factor of the algorithm given by Theorem 6.1.1. Let b = dβ−α

f(d)·log d . We partition the
input strings x and y into b blocks, denoted x̃i and ỹi for i ∈ [b], of length d/b each.

If ed(x, y) = O(dα), then maxi ed(x̃i, ỹi) ≤ ed(x, y) = O(dα). On the other hand, if
ed(x, y) = Ω(dβ), then maxi ed(x̃i, ỹi) ≥ ed(x, y)/b = Ω(dα · f(d) · log d). Moreover, the
number of blocks i such that ed(x̃i, ỹi) ≥ ed(x, y)/2b = Ω(dα · f(d) · log d) is at least

ed(x, y)− b · ed(x, y)/2b
d/b

= Ω(dβ−1 · b).

Therefore, we can tell the two cases apart with constant probability by sampling O(d1−β)
pairs of blocks (x̃i, ỹi) and checking if any of the pairs is at distance Ω(dα ·f(d) · log d). Since
for each such pair of strings, we only have to tell edit distance O(dα) from Ω(dα ·f(d) · log d),
we can use the algorithm of Theorem 6.1.1. We amplify the probability of success of that
algorithm in the standard way by running it O(log d) times. The total running time of the
algorithm is O(d1−β) ·O(log d) · (d/b)1+o(1) = O(dα+2(1−β)+o(1)).

Pattern matching. Our algorithm can be used for approximating the edit distance be-
tween a pattern P of length d and all length-d substrings of a text T . Let N = |T |. For
every s ∈ [N − 2d + 1] of the form id + 1, we concatenate T 's length-2d substring that
starts at index s with P , and compute an embedding of edit distance between all length-d
substrings of the newly created string into `α1 for α = 2O(

√
log d log log d). We routinely amplify

the probability of success of each execution of the algorithm by running it for O(logN)
times and selecting the median of the returned values. The running time of the algorithm
is O(N logN) · 2O(

√
log d log log d).
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The distance between each of the substrings and the pattern is approximate up to a
factor of 2O(

√
log d log log d), and can be used both for �nding approximate occurrences of P in

T , and for �nding a substring of T that is approximately closest to P .

6.2 Sketching and Streaming for Ulam Distance
In this section, we describing our sketching and streaming algorithms for the Ulam distance,
summarized in the following theorem.

Theorem 6.2.1. We can compute a randomized sketch sk : Ulamd → {0, 1}s for s =
(log d)O(1) in the streaming model, with (log d)O(1) time per input character, with the follow-
ing property. For every P,Q ∈ Ulamd, with high probability, given sk(P ) and sk(Q) only,
one can approximate ed(P,Q) within a constant approximation.

As mentioned before, the main ingredient here is the embedding of Ulam distance from
Theorem 5.2.1. However, to achieve a sketching algorithm, we use two more tools: sub-
sampling (i.e., projecting a vector on a random subset of coordinates) and sketching of heavy
hitters [CM05a] (which enable the recovery of coordinates on which the two sketched vectors
di�er considerably). This idea is somewhat related to the Lk norm estimation algorithm
of [IW05], although the technical development is very di�erent here. We do not provide a
sketch of the space

⊕
(`p)p

⊕
`∞ `1 in its full generality, and in fact, very recently, it has been

proven that this space does not admit short sketches when p > 1 [JW09]. Instead, we make
use of additional properties of our embedding's images. Finally, to obtain a data stream
algorithm for computing the sketch, we employ the block heavy hitters algorithm of [ADI08],
as well as a technique of an attenuated window in the stream.

6.2.1 A simple sketching algorithm
We start by giving a simpler construction of a polylog-space sketching algorithm Ulamd.
While this sketch is not computable in a stream as is, we will extend the algorithm from
here to obtain a streamable algorithm in Section 6.2.2.

Theorem 6.2.2. There exists a sketching algorithm for Ulamd achieving constant approxi-
mation using logO(1) d space.

Proof. Let P,Q ∈ Ulamd. We use the notation from Section 5.2.1. Notably, let ϕ,ϕa, ϕa,k
be as de�ned in Section 5.2.1, and let ζ, ζa, ζa,k be respectively ϕ(P ) − ϕ(Q), ϕa(P ) −
ϕa(Q), ϕa,k(P )− ϕa,k(Q).

We prepare sketches for all possible scales R = ci, i ∈ [logc d], for c a su�ciently large
constant, determined later. For each scale we solve the threshold problem: output �far� if
ed(P,Q) ≥ R and output �close� if ed(P,Q) ≤ R/c, with probability at least 2/3 (this can
be ampli�ed to whp by taking independent sketches). We also assume that ed(P,Q) ≤ cR
since the algorithm can enumerate all scales R from the biggest to the smallest stopping as
soon as the sketch for the corresponding scale outputs �far�.

The main idea is the following. Call a ∈ Σ expensive character if a ∈ T1/2, where Tδ
is the set of characters z such that ‖ζz,k‖1 > δ from some k ∈ K. In other words, the
expensive characters are the ones that contribute a constant fraction to the edit distance
(through ζa's). To �nd the expensive characters, we down-sample the characters to some
set S such that there are few expensive characters in S. It remains to estimate the number
of expensive characters in S.
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For an expensive character a, we say it is expensive at scale k for some k ∈ K if ‖ζa,k‖1 >
1/2. The main observation is that if a is an expensive character at scale k, then ‖ζa,k‖1 ≥

1
polylog(d)‖{ζa,k}a∈S‖1 (this step uses the second part of Theorem 5.2.1). Now, to �nd such
characters a, we use a sketching algorithm for �nding heavy hitters under `1. A more detailed
description follows.

De�nition 6.2.3. Consider a vector v ∈ Rm. Coordinate i is called a φ-heavy hitter if
|vi| ≥ φ‖v‖1. The set of φ-heavy hitters is denoted by HH1(φ).

We will use the CountMin algorithm due to Cormode and Muthukrishnan [CM05a].

Lemma 6.2.4 ([CM05a]). There exists a (randomized) sketching algorithm sk(·), that for
every two input vectors x, y ∈ Rm and parameter φ > 0, computes sketches sk(x) and sk(y)
of size O( 1

φ logm), such that one can reconstruct from the two sketches a set H ⊂ [d], where,
denoting HH1(φ) the heavy hitters for the vector x− y, we have

Pr[HH1(φ) ⊆ H ⊆ HH1(φ2 )] ≥ 1−m−Ω(1).

The algorithm. Fix some R. Remember that we are trying to decide whether E ≥ R
or E ≤ R/c, where E = ed(P,Q) (and by assumption E ≤ cR). Let S ⊂ [d] be a multi-set
of size |S| = d

R · cS log d, chosen uniformly at random with replacement, where cS is a large
constant.

We want to �nd, for each k ∈ K, the expensive characters a ∈ S at scale k. Fix k ∈ K
and consider the multi-set of vectors Υk(P ) = {2kϕa,k(P )}a∈S , and thus Υk(P ) ⊆ {0, 1}d.
For l = d

2k · cL log d, we sub-sample a multi-set L ⊂ [d] of l coordinates (with replacement).
For each ϕa,k ∈ Υk(P ), we let ϕLa,k be the restriction of ϕa,k to the coordinates from L, and
let ΥL

k (P ) be the set of ϕLa,k, where ϕa,k ranges over Υk(P ).
Our actual sketch consists of applying the CountMin algorithm (Lemma 6.2.4) to each

set ΥL
k (P ), k ∈ K, to �nd the positions of all the non-zeros in all the vectors in ΥL

k (P ). For
this we view ΥL

k (P ) as a vector of size |S| · l, and apply CountMin with φ = Ω(1/ log4 d).
The reconstruction stage for some sketches sk(P ) and sk(Q) is then the following. De�ne

Υk = Υk(P ) − Υk(Q) = {2kζa,k(P )}a∈S , and similarly with ΥL
k . Using the linear in ϕ

CountMin sketch sk(P )−sk(Q), we �nd all the non-zeros in ΥL
k . Once we found all the non-

zeros in ΥL
k , we de�ne the set Xk ⊂ S of characters which are �near-expensive� according to

the subset L: i.e., a ∈ Xk i� ‖2kζLa,k‖1 ≥ 1
3cL log d. Then, the set of all expensive characters

in S is estimated to be X = ∪kXk. If |X| ≥ 1
3 · cS log d, then we declare P and Q to be far.

Otherwise, P and Q are close.

Analysis. We now show the correctness of the algorithm.
Let TSδ be the set of characters a ∈ S such that there exists k ∈ K for which ‖ζa,k‖1 ≥ δ.

The main part of the analysis is to prove that the setX satis�es the following with probability
≥ 2/3:

TS1/2 ⊆ X ⊆ TS1/5. (6.3)

Eqn. (6.3) will be enough due to the following estimates of the sizes of TS1/2 and TS1/5. We have
that ES

[|TSδ |
]

= |Tδ|/d · |S| = |Tδ|
R · cS log d, and, by Lemma 5.2.3, 1/2 ·E ≤ |Tδ| ≤ 4/δ ·E.

Then, if P and Q are far, then ES
[
|TS1/2|

]
≥ 1

2 · cS log d, and then, by Cherno� bound,

|TS1/2| ≥ 1
3 · cS log d, w.h.p. Similarly, if P and Q are close, then ES

[
|TS1/5|

]
≤ 20

c · cS log d,
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and thus, by Cherno� bound, |TS1/5| ≤ 30
c · cS log d, w.h.p. Setting c > 30 · 3 = 90 will

separate the �far� from the �close� case.
Next we argue that restricting to coordinates from L roughly preserves the property of

being expensive character at scale k. First, if a ∈ S was expensive character at scale k, i.e.,
‖ζa,k‖ > 1/2, then we argue that w.h.p. ‖2kζLa,k‖1 > 1

3cL log d. Indeed EL
[
‖2kζLa,k‖1

]
=

‖2kζa,k‖1
d l = 1

2 · cL log d, and thus, w.h.p., ‖2kζLa,k‖1 ≥ 1
3 · cL log d (by Cherno� bound).

Second, in a similar fashion we get that, if ‖ζa,k‖ < 1/5, then ‖2kζLa,k‖ < 1
4 · cL log d, w.h.p.

Now we bound the number of non-zeros in the vector ΥL
k � this would set a lower bound

for the value φ, and thus an upper bound on the space. For this, we just need to estimate
ES,L

[‖ΥL
k ‖1

]
:

ES,L
[‖ΥL

k ‖1
]

= |S|·l· 1
d2

∑

a∈[d],i∈[d]

|2kζa,k,i| ≤ cScL log2 d

R
·‖ζ‖1 ≤ cScL log2 d

R
·O(log2 d)·E ≤ O(log4 d),

where we used the second part of Theorem 5.2.1 to upper bound ‖ζ‖1. By Markov's in-
equality, ES,L

[‖ΥL
k ‖1

] ≤ O(log4 d) with probability ≥ 0.9.
At this moment we are done. The set X will contain all the characters a such that there

exists k for which ‖ζa,k‖ > 1/2, or a ∈ TS1/2. Also, for any a ∈ X, there exists some k such
that ‖ζa,k‖ > 1/5, which means that X ⊆ TS1/5. Thus, Eqn. (6.3) holds with probability
≥ 8/10, which is what we wanted to prove for correctness.

The space requirement is O(log d · 1/φ · log d) = O(log6 d).

6.2.2 Implementing the sketch in the streaming model
We now show how to modify our sketching algorithm from Section 6.2 in order to make it
computable in a streaming fashion. Speci�cally, we show we can compute the sketch having
only a sequential access to the permutation P ∈ Ulamd in order from P [1], P [2], . . . to P [d],
and we are bounded to use only (log d)O(1) space.

We use an algorithm for block heavy hitters, due to [ADI08], described below. Then we
show how to prove Theorem 6.2.1.

Block Heavy Hitters
Let Mn,m be the set of real matrices A of size n by m, with entries from E = 1

nm ·
{0, 1, . . . nm}. For a matrix A, we let Ai be its ith row.

Theorem 6.2.5 ([ADI08]). Fix some n,m ≥ 1 and φ ∈ [0, 1]. There exists a randomized
linear map (sketch) µ : Mn,m → {0, 1}s, where s = (φ log nm)O(1), such that the following
holds. For a matrix A ∈Mn,m, it is possible, given µ(A), to �nd a set W ⊂ [n] of rows such
that, with high probability, we have:

• for any i ∈W , ‖Ai‖1
‖A‖1 ≥ φ/2 and

• if ‖Ai‖1
‖A‖1 ≥ φ, then i ∈W .

Also, there exists a randomized function ρ : Em → {0, 1}s such that µ(A) = µ′(ρ(A1), ρ(A2), . . . ρ(An))
(i.e., the sketch µ may be seen as �rst sketching the rows of A (using the same function ρ)
and then sketching the sketches).
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For completeness purposes, we o�er a description of the algorithm for computing the
sketch µ. The algorithm of [ADI08] is somewhat similar to the CountMin sketch of [CM05a]
and is as follows. The function ρ(x) for x ∈ Em is a vector of C = (lognm)O(1) Cauchy
projections of x. In particular, [ρ(x)]i, for i ∈ [C], is equal to [ρ(x)]i = vi ·x, where each entry
of vi ∈ Rm is chosen according to the Cauchy distribution with pdf f(z) = 2

π
1

1+z2
. Then µ

hashes ρ(A1), ρ(A2), . . . ρ(An) (with keys 1, 2, . . . n respectively) to a set of H = (log nm)O(1)

hash tables, each of size L = (φ−1 lognm)O(1). We note that an entry of an hash table is now
a vector of size C that is equal to the sum of all vectors ρ(Ai) that hash into the corresponding
bucket. The reconstruction stage �nds all elements W ⊂ [n] that are �heavy� in at least a
constant fraction of the H hash tables, where we say an element i ∈ [n] is �heavy� in a hash
table in the following case. Consider the corresponding hash table, and the bucket where i
is hashed to. If the median of the absolute value of the C values stored in the corresponding
bucket is greater than some φO(1)

(lognm)O(1) , then i is �heavy� in the corresponding hash table.

A Streamable Sketch for Ulam metric: proof of Theorem 6.2.1

Fix P ∈ Ulamd. We use the same notation as in Section 5.2.1 and Theorem 6.2.2.
Algorithm. We �rst slightly modify our embedding φ, to obtain another constant

distortion embedding ψ : Ulamd →
⊕d

(`2)2
⊕O(log d)

`∞ `2d1 ; the advantage of ψ is that it is
more amenable to streaming. We de�ne a vector ψa,k(P ) to be almost as ϕa,k, except
that di�erent entries are scaled. Namely for each b ∈ Σ̄ such that ϕa,k > 0 (i.e., b ∈
Pak), we set ψa,k = ϕa,k(P ) · e−w/k = 1

2ke
−w/k where w = P−1[a] − P−1[b] is the distance

between the position of symbols a and b. As before, we construct ψ = ⊕a∈[d] ⊕k∈[K] ψa,k ∈⊕d
(`2)2

⊕O(log d)
`∞ `2d1 . We note that this is constant distortion according to the following

argument for some permutations P,Q ∈ Ulamd. If we de�ne T ′δ to be set of a ∈ [d] such
that there exists k ∈ [K] such that ‖ψa,k(P ) − ψa,k(Q)‖1 ≥ δ, then it is easy to note that
T1/2 ⊂ T ′1/2e and that, for any δ > 0, we have T ′δ ⊂ Tδ/c for some constant c > 1. The last
claim follows from the argument that, for any a ∈ [d] \ Tδ/c, we have that

‖ψa,k(P )− ψa,k(Q)‖1 ≤
d/k∑

j=1

e−j+1‖ψa,kj(P )− ψa,kj(Q)‖1 ≤
d/k∑

j=1

e−j+1 · δ/c ≤ δ.

The streamable sketching then proceeds as follows. As before, we subsample a set S of
coordinates of size |S| = d

R ·cS log d. As in Theorem 6.2.2, we construct a separate sketch for
each k ∈ [K]. So �x k. Consider the matrix A of size n = |S| and m = |Σ̄| = 2d to be equal
to AP,ka,b = [ψa,k]b (the nth coordinate of ψa,k. We will apply the linear sketch of [ADI08].
Let µ, ρ be as in the Theorem 6.2.5.

During the streaming operation, we keep a sketch ρ(AP,ka ), where a ∈ [d] is the symbol
in the current position in the stream. Once we move the next position, P−1[a] + 1, which
contains a symbol b = P [P−1[a]+1], we perform the following two steps. First, we multiply
ρ(AP,ka ) by e−1/k, to obtain e−1/kρ(AP,ka ) = ρ(AP,kb ). Second, we add the sketch ρ(Ab) to
the (linear) sketch µ.

In the end, our sketch sk(P ) consists of k sketches µ, for each thereshold radius R.
Analysis. Fix permutations P, q ∈ Ulamd. The analysis is now quite very simple: we

just need to verify that, for �xed k ∈ [K], µ(AP,k) and µ(AQ,k) lets us identify all characters
a that are expensive at scale k. Indeed µ(AP,k) − µ(AQ,k) = µ(AP,k − AQ,k) and thus, the
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algorithm from Theorem 6.2.5 will return a set Wk such that:

• for any a ∈Wk, ‖ψa,k(P )−ψa,k(Q)‖1P
a∈S ‖ψa,k(P )−ψa,k(Q)‖1 ≥ φ/2 and

• if ‖ψa,k(P )−ψa,k(Q)‖1P
a∈S ‖ψa,k(P )−ψa,k(Q)‖1 ≥ φ, then i ∈Wk.

Remember that we use φ = (log d)−O(1). Now, combined with the observation that

ES

[∑

a∈S
‖ψa,k(P )− ψa,k(Q)‖1

]
≤ ES

[∑

a∈S
‖ϕa,k(P )− ϕa,k(Q)‖1

]
≤ O(log2 d),

we conclude that the set W = ∪kWk is such that T ′S1/20 ⊆ W ⊆ T ′S1/5, and thus by
estimating |W |, we can decide whether ed(P,Q) ≤ R or ed(P,Q) ≥ cR w.h.p.

This completes the proof of Theorem 6.2.1.
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Part II

Impossibility Results
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Chapter 7

Sketching Lower Bounds

In this chapter, we will show that the classical approaches to NN under edit, Ulam, and
EMD distances fail to achieve good approximation.

For edit and Ulam distances, we show a sketching lower bound for these two distances, for
up to a nearly logarithmic approximation. An immediate implication is that any embedding
of edit or Ulam distances into `1, or powers of `2, must have at least a near-logarithmic
distortion. This is the �rst non-trivial sketching lower bound for any edit distance.

For EMD over boolean cube {0, 1}d, we show a sketching lower bound for up to linear in
the dimension approximation. Again, this implies non-embeddability statements into, say,
`1 or powers of `2 spaces.

Edit and Ulam distances. For edit distances, our result should also be seen from a wider
perspective � that of understanding the fundamental complexity of the edit distances. In
particular, currently, we lack e�cient algorithms for most problems involving standard edit
distance (even on binary strings). For the NN problem, all known algorithms with sub-
linear query time either require large space or have large approximation error. Speci�cally,
Indyk [Ind04] achieves constant approximation using ndΩ(1) space, and Ostrovsky and Rabani
[OR07] obtain 2O(

√
log d log log d) approximation using space that is polynomial in d and n.

Similarly, even the basic question of computing the edit distance between two strings requires
nearly-quadratic time, and the best approximation achievable in a near-linear time is of
2O(
√

log d log log d) (see also the discussion in Chapter 6).
It is thus natural to ask: is it really �hard� to design algorithms for the edit distance?

A natural benchmark is the Hamming distance, which is equal to the number of positions
where the two strings di�er. Hamming distance can be seen as edit distance where the
only operations allowed are substitution. For Hamming distance, much better algorithms
are known: (i) the distance between two strings can clearly be computed in O(d) time,
and (ii) NN schemes of [KOR00, IM98] achieve 1 + ε approximation using space that is
polynomial in d and in n1/ε2 (see Sections 3.1 and 3.5.1). Empirically, edit distance appears
to be more di�cult than Hamming distance, and the reason is quite clear � insertions and
deletions cause portions of the string to move and create an alignment problem � but there
is no rigorous evidence that supports this intuition. In particular, we are not aware of a
computational model in which the complexity of approximating edit distance is provably
larger than that of Hamming distance. (See also Section 7.7 for a related discussion.)

The result from this chapter is the �rst rigorous evidence for the computational hardness
of approximating the edit distance, to the best of our knowledge. In fact, we show that, in
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the sketching model, the complexity of estimating edit distance is signi�cantly larger than
that of Hamming distance, and this is the �rst setting where such a separation is known.

Furthermore, from a technical perspective, we note that, prior to this thesis, the only
sketching lower bounds were known for the `p spaces, for p ∈ [1,∞] [Woo04, SS02a, BJKS04].
Only very recently, [JW09] have managed to also prove a sketching lower bound for some
product spaces (called mixed-`p/cascaded norms in their paper). Sketching of edit distance
was studied in [BEK+03, BJKK04, OR07, CK06], but the only known sketching lower bound
was trivial in the sense that it followed immediately from the Hamming distance and was
uninformative for even a 2-approximation.

Statement of results. We now formally state our sketching lower bound for the edit (on
{0, 1}d) and Ulam distances. Our result is best expressed in terms of the communication
complexity of the distance threshold estimation problem (DTEP) [SS02a]. In DTEP, for a
threshold R and an approximation α ≥ 1 �xed as parameters, we are given inputs x, y and
we want to decide whether ed(x, y) > R or ed(x, y) ≤ R/α.

In the communication protocols setting, Alice and Bob, who have access to a common
source of randomness, receive strings x and y respectively as their inputs, and their goal
is to solve DTEP by exchanging messages. The communication complexity of the protocol
is then de�ned as the minimum number of bits Alice and Bob need to exchange in order
to succeed with probability at least 2/3. When x, y come from the standard edit metric,
we denote the communication complexity by CC{0,1}

d

α,R . Similarly, when x, y come from the
Ulam metric, we denote the communication complexity by CCUlamd

α,R . Here we prove the
following theorem on the communication complexity of DTEP for edit and Ulam distances,
exhibiting a trade-o� between communication and approximation.

Theorem 7.0.6. There exists a constant c > 0, such that for every string length d > 1,
approximation α > 1, and R satisfying d0.1 ≤ R ≤ d0.49, we have

CCUlamd
α,R ≥ c log

(
log d
α logα

)
.

In particular, in the regime of constant communication complexity CCUlamd
α,R = O(1), the

approximation must satisfy α = Ω
(

log d
log log d

)
.

The same holds for the edit distance on binary strings as well: CC{0,1}
d

α,R ≥ c log
(

log d
α logα

)
.

We note that the communication complexity of the DTEP problem for a metric is a
lower bound on the sketching complexity of the metric (for the same approximation). This
follows from the fact that a sketching algorithm is a particular type of a communication
protocol: Alice computes the sketch of x and sends it to Bob, who, using the sketch of x
and the sketch of y, solves the DTEP problem.

To compare our lower bound with the Hamming distance, note that the Hamming dis-
tance admits a sketching algorithm achieving 1+ε approximation in O(1/ε2) space [KOR00].
In particular, for a 2-approximation, the complexity of the Hamming metric is O(1), while
that of the edit distance is at least Ω(log log d), by the above theorem. It thus follows that
the edit distance is indeed provably harder to compute than the Hamming distance, at least
in the context of communication protocols.

The previously known lower bounds for CC{0,1}
d

α,R and CCUlamd
α,R are all obtained by a

straightforward reduction from the same problem on Hamming metric. These bounds assert
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that the communication complexity for α = 1 + ε is Ω(1/ε), and in the case of sketching
protocols Ω(1/ε2) [Woo04] (see also [Woo07, Chapter 4] and [BC09]), and both are clearly
uninformative for (say) α = 2. See also [SU04] for other related results. The only non-trivial
upper bounds currently known are: (i) CC{0,1}

d

α,R ≤ O(1) for suitable α = 2O(
√

log d log log d);
and (ii) CCUlamd

α,R ≤ O(1) for suitable α = O(log d); and they both follow via embedding into
`1 [OR07, CK06]. (See also Chapter 1, namely Section 1.3.2 and Table 1.3.)

Other implications. We note our theorem also implies non-embeddability results into `1
and powers of `2, as we show in the next corollary. (In Section 7.6, we also present a more
direct proof, via a Poincaré-type inequality established in Theorem 7.0.6.)

Corollary 7.0.7. For every �xed p ≥ 1, embedding the standard edit metric or the Ulam
metric into (`2)p, the p-th power of `2, requires distortion Ω

(
log d

log log d

)
. The same is true

also for embedding into `1.

We note that our lower bounds are near-tight in at least one case, namely that of em-
bedding of Ulam distance into `1, which has O(log d) distortion embedding into `1 [CK06].
The only previous distortion lower bound was 4/3 [Cor03].

Proof of Corollary 7.0.7. Suppose p ≥ 1 is �xed and the edit metric ed (or similarly the
Ulam metric) embeds into (`2)p with distortion D ≥ 1. In other words, the metric ed1/p

(i.e. 1/p-power of every distance) embeds into `2 with distortion D1/p. Since `2 embeds
arbitrarily well into `1, it is enough to solve DTEP for `1. For the DTEP problem on `1,
[KOR00] give a sketching algorithm with approximation 1 + 1

p and communication O(p2).
Together, we obtain a protocol for the DTEP problem on the metric ed1/p, which achieves
approximation D1/p(1 + 1

p) and communication O(p2). Observe that the same protocol
solves also DTEP on the edit metric ed, except that the threshold now is Rp instead of R,
and the approximation is (D1/p(1 + 1

p))
p < De. The communication is the same O(p2), and

thus Theorem 7.0.6 implies that De log(De) ≥ 2−O(p2) log d. For �xed p this completes the
proof.

Recent work. Finally, we remark that in very recent work [AJP10], we have extended the
lower bounds from Theorem 7.0.6 to prove improved lower bounds on the communication
complexity:

Fact 7.0.8 ([AJP10]). There exists a constant c > 0, such that for every string length d > 1,
approximation α > 1, and R satisfying d0.1 ≤ R ≤ d0.49, we have

CCUlamd
α,R ≥ c log d/ log log d

α .

The same holds for the edit distance on binary strings as well: CC{0,1}
d

α,R ≥ c log d/ log log d
α .

In particular, the fact implies that, for constant approximation, one requires Ω
(

log d
log log d

)

communication. (In the regime of constant communication complexity, the above fact does
not provide any improvement.) The lower bound from this fact is tight for the Ulam distance,
up to the exponent of the logarithm, since we have shown an sketching protocol achieving
constant approximation to Ulam distance in logO(1) d space (see Chapter 6). The proof of
Fact 7.0.8 from [AJP10] relies crucially on Theorem 7.0.6 proven in this thesis.
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EMD. We also consider the EMD metric on the hypercube {0, 1}d, for which we prove
the following communication complexity lower bound.

Theorem 7.0.9. For every dimension d ≥ 1, and approximation ratio 1 ≤ α ≤ d, there
exists R such that the corresponding problem DTEP problem for EMD has communication
complexity at least Ω(d/α).

We note that, in the regime of protocols with constant communication complexity, our
lower bound says that the best achievable approximation is at least Ω(d). This is in fact
tight, as there exists a O(d) distortion embedding of EMD over {0, 1}d into `1 (and thus a
constant communication protocol by the sketch of [KOR00]), see, [Cha02, IT03, KN06].

Our result also implies that EMD over hypercube has Ω(d) distortion for embedding into
`1, powers of `2, or ultra-sketchable spaces. Only non-embeddability into `1 was previously
known [KN06].

The results from this chapter have previously appeared in [AK07, AJP10].

7.1 Our Techniques
We now describe the main techniques of the proof of Theorem 7.0.6 (Ulam and edit distance
lower bound), and Theorem 7.0.9 (EMD lower bound). The two proofs share two general
commonalities. The �rst one is a certain reduction from the question on general communica-
tion protocols to the question on very speci�c protocols with only one bit of communication.
The second (more implicit) commonality is the use of Fourier decomposition of functions on
the hypercube (see Section 7.1.2 below for a primer in Fourier analysis on hypercube and
Zp = {0, 1, 2, . . . p− 1}).

Common technique. Generally speaking, we design two input distributions: µ̃0 over �far�
pairs (x, y) (i.e. ed(x, y) > R), and µ̃1 over �close� pairs (i.e. ed(x, y) ≤ R/α). The goal
then becomes to show that these distributions are indistinguishable by protocols with low
communication complexity. By Yao's minimax principle, it su�ces to consider deterministic
protocols.

The �rst step for both theorems is to reduce the problem to proving that the two distri-
butions µ̃0, µ̃1 are indistinguishable by boolean functions. Roughly speaking, we show that if
there is a protocol using at most l bits of communication, then there exists a (deterministic)
sketching protocol that uses sketches of 1 bit and achieves an advantage of at least Ω(2−l)
in distinguishing between the two distributions. Let HA,HB be the boolean functions that
Alice and Bob, respectively, use as their sketch functions. We can then further restrict the
sketching protocol so that protocol accepts if and only if HA(x) = HB(y). This step is
shown in Section 7.2.

From this moment, the two theorems diverge.

EMD. For EMD, the rest of the proof is based on one basic idea. We would like to design
the hard distributions µ̃0 and µ̃1 that are hard to distinguish by boolean functions HA,HB.
The basic idea is to consider two extreme cases. First, ifHA,HB depend on many coordinates
of the input, then they fail to distinguish the two distributions because of the random noise
that we include in our hard distribution. Second, if HA,HB depend on few coordinates,
then again they fail to distinguish because of a speci�c property of our hard distribution
for EMD. This property on the hard distribution induces certain Fourier-analytic structure
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on the functions HA,HB, namely that all low-level Fourier coe�cients have to be zero.
Our hard distribution satisfying the above two properties (random noise, and the Fourier-
analytic property) is similar to the one from [KN06] used for the `1 non-embeddability of
EMD. Finally, to conclude, we argue that considering the two cases � HA,HB depend
on either many or few coordinates � is enough due to the Fourier decomposition of the
functions. The proof of Theorem 7.0.9 appears in Section 7.2.

Ulam and edit distances. For Ulam and edit distances, the theorem requires consider-
ably more ideas. On a basic level, we reuse the idea of decomposing the functions into parts
that depend on either a few or many coordinates. While the case of �depending on many
coordinates� is essentially the same, the other case is di�erent (from either the EMD case of
the edit distance non-embeddability results) and is the main thrust of the sketching lower
bound for Ulam and edit distances (as well as of the majority of the rest of this chapter).

The second step of this lower bound will be to further characterize the advantage achieved
by HA,HB in terms of a carefully crafted measure of statistical distance between the two in-
put distributions µ̃0, µ̃1. For this approach to be e�ective, it is important that the functions
HA,HB depend only on a few coordinates of their inputs, and in order to guarantee this
(indirectly), we include in µ̃0, µ̃1 a noise component, which e�ectively destroys any depen-
dence of HA,HB on many coordinates. Speci�cally, this step assumes that, each distribution
µ̃t, t ∈ {0, 1}, has the following structure: choose x ∈ Zdp uniformly at random, and then
generate y from x via a sequence of two randomized operations. The �rst of the two is
a noise operator with rate ρ ∈ (0, 1), i.e., each coordinate is modi�ed independently with
probability 1 − ρ into a randomly chosen value. The second operation permutes the coor-
dinates according to a permutation drawn from a distribution Dt. Given this Dt, consider
the following derived distribution: take a vector u ∈ Zdp with λ non-zero positions (called a
λ-test) and apply a random permutation π ← Dt to it; let A(t,λ)

u be the resulting distribution
of vectors. (Note that the support of A(t,λ)

u contains only vectors with precisely λ non-zero
entries.) Our measure ∆λ, called λ-test distinguishability, is the maximum, over all such
λ-tests u, of the total variation distance between A(0,λ)

u and A(1,λ)
u . It pretty much captures

the statistical advantage in distinguishing D0 from D1 (and thus µ̃0 from µ̃1) achievable by
inspecting only λ positions of, say, y (e.g., by tracing them back to x). Altogether, our upper
bound on the advantage achieved by HA,HB takes roots in the following dichotomy. If HB
essentially depends on many coordinates of y (e.g., a linear function with many terms), then
the advantage is bounded by ρλ (i.e., the noise destroys almost all the information), and if
HB essentially depends on a few, say λ, coordinates, then the advantage is bounded by the
aforementioned ∆λ. To prove this dichotomy, we rely on Fourier analysis which expands
HA,HB into linear functions at di�erent levels λ. This step appears in Section 7.4.

We �nalize by completing the description of µ̃0, µ̃1, namely by detailing the construction
of D0,D1. For the construction distributions, we give an upper bound on the λ-test distin-
guishability ∆λ for these distributions. In a simpli�ed view, each distribution Dt is generated
by a block rotation operation, namely, choosing a random block of length L and applying
to it εtL cyclic shifts. The di�erence between the two distributions is in the magnitude of
the rotation (namely, εt). This step appears in Section 7.5.

Our use of Fourier analysis is elementary, and does not involve the KKL theorem [KKL88]
or Bourgain's noise sensitivity theorem [Bou02], which were used in the previous non-
embeddability results for edit distance [KN06, KR06]. We also note that our hard dis-
tribution is notably di�erent from the distributions of [KR06] or [KN06], which do admit
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e�cient communication protocols.

7.1.1 Additional notation
Before proceeding to the proof, we establish some additional notation, and give a brief
overview of the Fourier analysis, as used in the proof of our theorem.

For x ∈ Σd, we let xi denote the ith position in x whenever i ∈ [d], and extend the
notation to i 6∈ [d] by de�ning xi = xj where i ≡ j (mod d) and j ∈ [d].

We will use the following operation on strings.

De�nition 7.1.1 (Rotation operations). Fix a positive integer d and an alphabet Σ. For
s, L ∈ [d], de�ne the right rotation operation −→R s,L : Σd → Σd as follows. When applied to a
string x, it takes the substring of x of length L starting at position s (with wrap-around), and
performs on it one cyclic shift to the right (by 1 position); the rest of x remains unchanged.
A left rotation ←−R s,L is de�ned similarly. We call L the length of the rotation operation.

See an illustration in Fig. 7-1.

aσ

a σ
−→

R s,L(x):

L

x:

Figure 7-1: The rotation operation. Here, σ is the substring of length L − 1 starting at
position s in x, and a is the character at position s+ L− 1 in x.

Note that −→R s,L works as a permutation (and thus is a bijection on the space of strings).
Also, for i ∈ [L],

(−→
R s,L

)i
is a rotation of the same block by i positions to the right. Note that

a rotation operation −→R s,L can be simulated by at most two deletions and two insertions (and
only one of each when the rotation block does not wrap-around at the string's boundary).
Thus, ed

(
x,

(−→
R s,L

)i
(x)

)
= O(i) for every x and i.

7.1.2 Fourier Analysis over Zdp
We review basic Fourier Analysis over Zdp for a prime p ≥ 2 (see, e.g., [�te00] for more
background on Fourier analysis, especially its use in theoretical Computer Science).

The collection of functions f : Zdp → C is a vector space of dimension pd, equipped with an
inner product given by 〈f, g〉 = Ex∈Zd

p

[
f(x) · g(x)

]
. For u ∈ Zdp, de�ne a character χu(x) =

e
2πi
p

(x·u), where x · u is the scalar product of x, u ∈ Zdp. The set of characters {χu | u ∈ Zdp}
forms an orthonormal basis, called the Fourier basis. Thus every function f : Zdp → C admits
a Fourier expansion f =

∑
u∈Zd

p
f̂uχu, where f̂u = 〈f, χu〉 is called the Fourier coe�cient of

f corresponding to u. Parseval's identity states that Ex∈Zd
p

[
f(x)g(x)

]
=

∑
u∈Zd

p
f̂uĝu.
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We let Nρ stand for a noise vector over Zdp, namely, a vector where each coordinate is set
independently at random as follows: with probability ρ it is set to zero, and with probability
1− ρ it is set to a random value from Zp. We refer to ρ as the rate of the noise.

The noise operator Tρ (also called Bonami�Beckner operator) operates on functions
f : Zdp → R, and is de�ned by (Tρf)(x) = ENρ [f(x+Nρ)]. The following standard fact
relates the Fourier coe�cients of f with those of Tρf . For a vector u ∈ Zdp, de�ne the weight
of u, denoted wt(u), to be the number of coordinates in u that are non-zero.

Fact 7.1.2. For every vector u ∈ Zdp, (̂Tρf)u = f̂u · ρwt(u).

Proof. We can write (Tρf)(x) = ENρ [f(x+Nρ)] as

ENρ


 ∑

u∈Zd
p

f̂ue
2πi
p
u·(x+Nρ)


 =

∑

u∈Zd
p

f̂ue
2πi
p
u·xENρ

[
e

2πi
p
u·Nρ

]
=

∑

u∈Zd
p

f̂uρ
wt(u)χu,

where we used the fact that for every w ∈ Zp \ {0} we have Ev∈Zp

[
e

2πi
p
wv

]
= 0.

Note that, for p = 2, i.e. Fourier expansion over {0, 1}d, this is equivalent to having
(̂Tρf)S = f̂Sρ

|S| for every S ⊆ [d].

7.2 Protocols with Constant Communication
We now develop a characterization of the constant-communication protocols for DTEP prob-
lem. Part of this characterization will be used in the rest of the chapter. Fix some metric
(M, dM), threshold R > 0, and approximation α > 1. As before, we call a pair (x, y) far if
dM(x, y) > R and close if dM(x, y) ≤ R/α.

First, we show that, if there exists an e�cient communication protocol for a DTEP
problem, then, for every two distributions µ̃0 from µ̃1 over far and close pairs respectively
(candidate �hard distribution), there exist some real functions (in fact, boolean) with a
non-negligible advantage in distinguishing the distribution µ̃0 from µ̃1. In other words, for
protocols with constant communication, for all distributions µ̃0, µ̃1, there exist functions
f, h :M→ {−1,+1} such that

Pr
(x,y)←µ̃0

[(f(x)− g(y))2]− Pr
(x,y)←µ̃1

[(f(x)− g(y))2] ≥ Ω(1). (7.1)

We also show that condition from inequality (7.1) is also necessary for protocols of
constant communication. In particular, if the communication complexity of the considered
DTEP problem is at least some absolute constant, then there exist some �hard distributions�
µ̃0 and µ̃1, for which any real-valued function cannot distinguish between the two with good
advantage, i.e., the inequality (7.1) does not hold.

We now quantify and prove the above two directions. We note that, we need only the
�rst direction in the rest of the chapter, namely for proving Theorems 7.0.6 and 7.0.9.

Lemma 7.2.1. Fix some metric (M, dM), threshold R > 0, and approximation α > 1.
Let µ̃0 and µ̃1 be some arbitrary distributions over far and close pairs, respectively. If the
communication complexity of the DTEP problem is bounded by an integer l, then there exist
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boolean functions HA,HB : Zdp → {−1,+1}, such that

Pr
(x,y)←µ̃0

[HA(x) 6= HB(y)]− Pr
(x,y)←µ̃1

[HA(x) 6= HB(y)] ≥ 1
3 · 2−l. (7.2)

Note that the above inequality is equivalent to inequality (7.1) for boolean functions
f = HA and g = HB.

Proof. The idea is to reduce the general communication protocol to a simultaneous (i.e.
sketching) protocol where Alice and Bob each send a sketch of one bit only, and the referee
performs an equality test on these two bits. Then, using Yao's minimax principle, we easily
obtain two deterministic boolean functions HA and HB, completing the proof.

To accomplish the reduction, consider an actual l-bit (randomized) protocol Π. We
construct a one-bit sketching protocol as follows: Alice and Bob make a random guess of the
entire transcript of an l-bit protocol using the public coins, uniform over the space of all 2l

protocols (the guess is independent of the actual inputs). Each of them then checks whether
the guessed transcript describes the messages they would send in the actual protocol Π,
using the guessed transcript to simulate the other party's messages. For example, Alice
starts the protocol Π (that depends on her input), but instead of sending the messages to
Bob, she veri�es that her messages are exactly the same as the ones appearing in the guessed
protocol. Alice also uses the messages from the guessed protocol to simulate Bob's answers.

If at any moment Alice (or Bob) spots an inconsistency, she (or he) sends a bit chosen
independently at random. Otherwise, Alice outputs 1, and Bob outputs the outcome of the
guessed transcript. Observe that if the guessed transcript is not equal to the actual protocol
they would have run, then at least one of the two players notices an inconsistency, and one
of the bits output by Alice or Bob is random.

Thus, if x and y are such that ed(x, y) ≤ R/α (close pair), then Alice and Bob's bits are
equal with probability at least 2

3 ·2−l+(1−2−l)1
2 = 1

2 + 1
62−l (where 2

3 is the probability that
the original protocol Π succeeds on (x, y)). Similarly, if x and y are such that ed(x, y) > R
(far pair), then Alice and Bob's bits are equal with probability at most 1

3 ·2−l+(1−2−l) · 12 =
1
2− 1

62−l. Using Yao's minimax principle, we conclude that, for given distributions µ̃0 and µ̃1

over far and close pairs respectively, there exist some �xed boolean functions HA,HB that
achieve a success probability at least 1

2 + 1
62−l on the distribution µ̃ = µ̃0+µ̃1

2 , or, formally,

1
2

Pr
µ̃0

[HA(x) 6= HB(y)] +
1
2

Pr
µ̃1

[HA(x) = HB(y)] ≥ 1
2

+
1
6
· 2−l.

We conclude that Prµ̃0 [HA(x) 6= HB(y)]− Prµ̃1 [HA(x) 6= HB(y)] ≥ 1
3 · 2−l.

We now show that, for the regime of constant communication, the above lemma is tight.
Although the lemma from below will not be used in the rest of the chapter, we present it
for the completeness purposes (we note that it has been used in [AJP10] to prove a certain
direct-sum theorem on communication complexity).

Lemma 7.2.2. Fix some metric (M, dM), threshold R > 0 and an approximation α > 1,
and assume that the corresponding DTEP problem has communication complexity equal to
C ≥ 2.

Then, there exist some distributions µ̃0 and µ̃1 over far and close pairs respectively satis-
fying the following. For any vector-valued functions f, g :M→ Rd with ‖f(x)‖2, ‖g(x)‖2 ≤
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1 for all x ∈M and some dimension d ≥ 1, there exists an ε = O(C−1/4 log2C) such that
∣∣E(x,y)←µ̃1

[‖f(x)− g(y)‖2]− E(x,y)←µ̃0

[‖f(x)− g(y)‖2]∣∣ < ε. (7.3)

Note that, in Lemma 7.2.1, we obtain functions HA,HB which may also be viewed as
vector-valued functions, in a 1-dimensional space, of norm one.

Proof. Fix an ε such that C = Ω(1/ε4 · log2 1/ε). First we note that any protocol for the
considered DTEP problem with success probability ≥ 1

2 +ε/3 has size at least C ′ = Ω(C ·ε2).
By Yao's principle, there exists a hard distribution ψ for protocols of size < C ′. We

decompose the distribution ψ into two distributions with distinct support. We de�ne dis-
tribution (x, y) ← µ̃0 to be the distribution ψ conditioned on dM(x, y) > R. Let p0 be the
probability that dM(x, y) > R when x, y are drawn from ψ. Analogously, de�ne µ̃1 and p1,
and note that p1 = 1− p0.

Now observe that p0, p1 ≥ 1
2 − ε/3 � otherwise, there exists a trivial 1-bit protocol with

success probability at least 1
2 + ε/3.

For the sake of contradiction assume Equation (7.3) does not hold, and, w.l.o.g.,

E(x,y)←µ̃1

[‖f(x)− g(y)‖2]− E(x,y)←µ̃0

[‖f(x)− g(y)‖2] ≥ ε.

Then, we show how to design a simultaneous-message protocol of size O(1/ε2 ·log2 1/ε) <
C ′ that has success probability of at least 1

2 + ε/3.
Namely, we take a randomized protocol that estimates the quantity ‖f(x)−g(y)‖2 up to

additive ε/10 term, with probability 1−ε/10, using the `2 estimation algorithm. Speci�cally,
since ‖f(x)− g(y)‖2 ≤ 4, we can just use a (1 + ε/40)-multiplicative `2 estimation protocol
(e.g., via embedding `2 into the Hamming space and then using the [KOR00] sketch). Note
that the protocol has size O(1/ε2) (for [KOR00] sketch), times O(log 1/ε) (to boost the
success probability to ≥ 1 − ε/10), times another O(log 1/ε) (to guess the right scale); in
other words, the size of the protocol is less than C ′.

Let z(x, y) be the estimate given by the `2 estimation protocol on input (x, y). Then the
protocol accepts with probability exactly z(x, y) (by tossing some additional random coins).
The resulting success probability is at least:

p1 · Eµ̃1 [(1− ε/10)z(x, y)] + p0 · Eµ̃0 [(1− ε/10)(1− z(x, y))] ≥
1− ε/3 + 1

2

(
Eµ̃1

[‖f(x)− g(y)‖2]− Eµ̃0

[‖f(x)− g(y)‖2])− 3ε/10 ≥ 1
2 + ε/3.

This is a contradiction. Although the resulting protocol is randomized, by Yao's minimax
principle, there should also exist a deterministic protocol with (at least) the same success
probability since the input distribution is �xed.

This completes the proof of Lemma 7.2.2.

7.3 Warm-up: EMD Lower Bound
Our �rst communication complexity lower bound is for the EMD distance over {0, 1}d,
namely Theorem 7.0.9. This case should be seen as a warm-up for the considerably harder
case of edit distances lower bound. Nonetheless, this case already uses the decomposition of
boolean function into its Fourier decomposition, and some basic ides that will reappear in
the theorem on the edit distances, presented in the following sections.
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Proof of Theorem 7.0.9. We apply Lemma 7.2.1. Thus, to prove a lower bound of Ω(d/α),
we only need to construct hard distributions µ̃0 and µ̃1 over far and close pairs of sets (X,Y ),
respectively, such that, for any boolean functions HA,HA over subsets of {0, 1}d, we have
that

Pr
(X,Y )←µ̃0

[HA(X) 6= HB(Y )]− Pr
(X,Y )←µ̃1

[HA(X) 6= HB(Y )] ≤ 2−Ω(d/α). (7.4)

Speci�cally, from inequality (7.4) together with Lemma 7.2.1, we immediately conclude
that the communication complexity is at least Ω(d/α), proving Theorem 7.0.9.

To prove inequality (7.4), we build on the insights of the non-embeddability result of
[KN06]. In particular, we use their code-based distribution of �hard inputs�, as well as its
Fourier-analytic properties.

We start by constructing the hard distributions µ̃0 and µ̃1. We assume that 1 < α ≤
d/200, since for α > d/200 the conclusion is trivial. Fix R = d/100. Fix C ⊂ {0, 1}d to be
a linear code with dimension ≥ d/4 and weight ≥ cd, where c is a constant; for existence
of such code, see e.g. [KN06, Corollary 3.5]. For x ∈ {0, 1}d, we de�ne Gx to be the set
{x + a}a∈C⊥ (formally, G is the set of isometries fg(x) = x + g, g ∈ C⊥, and Gx is the
orbit of x induced by the group action G). In the sequel, we will only consider as inputs
(for Alice and Bob) sets of the form X = Gx for some x ∈ {0, 1}d. Notice these sets all
have size s = |C⊥| ≤ 23d/4. Furthermore, for all X = Gx, Y = Gy, and y′ ∈ Y , we have
EMD(X,Y ) = minx′∈X ‖x′ − y′‖1 (see, e.g., [KN06, Lemma 3.1]).

Recall thatNε is a vector of d random independent boolean values, each equal to one with
probability 1/2−ε/2. Let η0 be the uniform distribution over pairs (x, y) ∈ {0, 1}d×{0, 1}d,
and let η1 be a distribution over pairs (x, y) ∈ {0, 1}d × {0, 1}d where x is random and
y = x + Nε for ε = 1 − R/αd. For i ∈ {0, 1}, de�ne µi as the distribution of (Gx,Gy)
where (x, y) are picked from ηi. Since not all the pairs (X,Y ) in the support of µi are legal
(i.e., some pairs are not far or close, respectively), we de�ne µ̃i as the restriction of µi to
legal pairs. Namely, µ̃0 is the distribution µ0 conditioned on the fact that EMD(X,Y ) > R;
similarly we de�ne µ1.

We need show that, for each i ∈ {0, 1}, the statistical distance between µi and µ̃i is
2−Ω(d/α), and, hence, by switching between the two we do not loose anything. For (x, y)
drawn from η1, by Cherno� bound (Fact 2.4.4), with probability at least 1−2−Ω(d/α), we have
‖x− y‖1 ≤ 2d(1/2− ε/2) = R/α, implying that EMD(X,Y ) ≤ R/α, i.e. (X,Y ) = (Gx,Gy)
is a close pair. Similarly, for (x, y) drawn from η0, we can prove that for every x′ ∈ Gx,
the probability that ‖y − x′‖1 > d/100 is at least 1 − 2−Ω(d). Indeed, for every x′ ∈ Gx,
the number of points at distance ≤ d/100 from x′ is at most by

(
d

d/100

) ≤ 2d/10. Thus, with
probability at least 1− s · 2d/10/2d ≥ 1− 2−Ω(d), for all x′ ∈ Gx we have ‖y− x′‖1 > d/100,
implying that EMD(X,Y ) > R, i.e., (X,Y ) = (Gx,Gy) is a far pair.

Now we proceed to proving that the constructed distribution satis�es inequality (7.4) for
all boolean functions HA,HB on subsets of {0, 1}d of size s. For this, we �x some functions
HA,HB and de�ne f, g : {0, 1}d → {0, 1} as the extensions of HA and HB to the {0, 1}d
cube in the natural way: f(x) , HA(Gx) and g(x) , HB(Gx). By the de�nition of G,
for all a ∈ C⊥ we have that f(x) = f(x + a) and g(x) = g(x + a). Furthermore, for all
i ∈ {0, 1}, we have that Prηi [f(x) = g(y)] = Prµi

[HA(Gx) = HB(Gy)
]
. At this moment,
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we can bound the distinguishing power of HA and HB as follows:

Pr
(X,Y )←µ̃0

[HA(X) 6= HB(Y )]− Pr
(X,Y )←µ̃1

[HA(X) 6= HB(Y )]

≤ Pr
(X,Y )←µ0

[HA(X) 6= HB(Y )]− Pr
(X,Y )←µ1

[HA(X) 6= HB(Y )] + TV(µ0, µ̃0) + TV(µ1, µ̃1)

≤ Pr
(x,y)←η0

[f(x) 6= g(y)]− Pr
(x,y)←η1

[f(x) 6= g(y)] + 2−Ω(d/α).

= E(x,y)←η0
[
(f(x)− g(y))2]− E(x,y)←η1

[
(f(x)− g(y))2] + 2−Ω(d/α),

= E(x,y)←η0
[
f(x)2 − 2f(x)g(y) + g(y)2

]− E(x,y)←η1
[
f(x)2 − 2f(x)g(y) + g(y)2

]
+ 2−Ω(d/α),

= 2E(x,y)←η1 [f(x)g(y)]− 2E(x,y)←η0 [f(x)g(y)] + 2−Ω(d/α), (7.5)

where we used the bound on statistical distance between µi and µ̃i for i ∈ {0, 1}, the
de�nition of f, g, and the fact that η0 and η1 have uniform marginals.

We now use the Fourier properties of the functions f and g to bound the expectation
of f(x)g(y) under the distributions η0 and η1. Suppose f̂S are the Fourier coe�cients of f ,
for S ⊆ [d]; de�ne ĝS similarly. Note that f̂∅ = Ex [f(x)] and ĝ∅ = Ex [g(x)] for the uniform
distribution on x. Thus, we have

E(x,y)←η0 [f(x)g(y)] = f̂∅ĝ∅. (7.6)

Now we compute the expectation for (x, y) drawn from η1. Using Parseval's identity and
Fact 7.1.2 for p = 2, we have

Eη1 [f(x)g(y)] = Ex [f(x)ENε [g(y +Nε)]] = Ex [f(x)ENε [(Tεg)(y)]] =
∑

S⊆[d]

f̂S (̂Tεg)S =
∑

S⊆[d]

f̂S ĝSε
|S|.

(7.7)
Now we use a crucial Fourier-analytic property of the functions f, g. Speci�cally, the

condition that f(x) = f(x + a) for all a ∈ C⊥ implies that that f̂S = 0 for all S with
0 < |S| < w(C), where w(C) ≥ cr is the weight of the code C (see [KN06, Lemma 3.3]).
Hence, in inequality (7.7), the sum is only over sets S such that |S| ≥ cd, and thus we obtain
that

Eη1 [f(x)g(y)] ≤ f̂∅ĝ∅ + εcd
∑

S⊆[d]

f̂S ĝS = f̂∅ĝ∅ + εcdEx,y←{0,1}d [f(x)g(y)] ≤ f̂∅ĝ∅ + εcd, (7.8)

where the equality uses the Parseval's identity.
Finally, plugging-in Eqn. (7.6) and Eqn. (7.8) into Eqn. (7.5), as well as ε = 1− R/αd,

we obtain that, for any boolean functions HA,HB, we have

Pr
(X,Y )←µ̃0

[HA(X) 6= HB(Y )]− Pr
(X,Y )←µ̃1

[HA(X) 6= HB(Y )]

≤ 2(f̂∅ĝ∅ + εcd)− 2f̂∅ĝ∅ + 2−Ω(d/α)

= 2(1−R/αd)cd + 2−Ω(d/α)

≤ 2−Ω(d/α).

We have completed proving inequality (7.4) and thus the proof of Theorem 7.0.9.
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7.4 Ulam and Edit Distances Lower Bound
We now proceed to proving Theorem 7.0.6, whose proof will take the rest of the chapter.
We focus on the lower bound for the Ulam distance, i.e., on lower bounding CCUlamd . Once
we establish this, the lower bound for edit distance on binary strings follows immediately by
the reduction from Ulam distance to edit distance, namely Lemma 2.1.1 from Chapter 2.

Fix the values of d and R, and let us use the alphabet Σ = Zp for p su�ciently large
so that a random string from Σd is non-repetitive with high probability (e.g., it su�ces to
set p = d3). As before, we denote our hard distribution by µ̃ = µ̃0+µ̃1

2 , where µ̃0 will be
a distribution over far pairs of strings (x, y) and µ̃1 will be a distribution over close pairs
(x, y), i.e., ed(x, y) > R and ed(x, y) ≤ R/α, respectively.

We will follow the steps outlined in Section 7.1 and eventually put all the pieces together
in Section 7.4.2. Our general approach to proving the theorem uses just a few simple
properties of the hard distribution, which we will specify along the way. To di�erentiate
the underlying technique from the speci�cs of our hard distribution, we describe the hard
distribution and prove its required properties separately, in Section 7.5.

Applying Lemma 7.2.1, we need to just disprove the inequality (7.2) for all boolean
functions HA,HB. Thus, for the rest of the section, we assume the existence of boolean
functions HA,HB for the sake of contradiction.

7.4.1 λ-Tests
In this section, we provide a method to lower bound the advantage achieved by the boolean
functions HA,HB, by relating it to a certain statistical property of the hard distribution µ̃.
Our hard distribution µ̃ = µ̃0+µ̃1

2 will have a speci�c generic construction that we describe
next. For each t ∈ {0, 1}, the distribution µ̃t is formed via a small modi�cation of another
distribution µt, which is easier to analyze (due to certain independencies), but might (rarely)
produce invalid inputs. Speci�cally, each µ̃t is the distribution µt conditioned on the fact
that the pair (x, y) ∈ µt is valid in the sense that x and y are both permutations and the
pair (x, y) is respectively a far (when t = 0) or a close (when t = 1) pair. We analyze below
the distributions µ0 and µ1 (speci�cally, in Lemma 7.4.4). For completeness, we mention
that, in the next section, we show that this analysis extends to distributions µ̃0 and µ̃1 using
the fact that µ̃0 and µ̃1 are statistically very close to distributions µ0 and µ1 respectively.

The distribution µt consists of pairs (x, y) chosen as follows: x ∈ Zdp is chosen uniformly
at random, and y is constructed from x in two steps. In the �rst step, let z , x+Nρ, where
Nρ, de�ned in the preliminaries, is noise of rate ρ ∈ (0, 1), independent of t. In the second
step, y is obtained from z by permuting the coordinates of z according to a distribution Dt.
Formally, Dt is a distribution over permutation operations, where a permutation operation
is a function π : Zdp → Zdp for which there exists a permutation π̂ : [d] → [d] such that
π(x) ≡ (xπ̂(1), . . . xπ̂(d)). We will require that Dt is symmetric in the sense that, for every π,
the permutation operations π and π−1 are equi-probable (in it). Notice that y has the same
marginal distribution as x, i.e. uniform over Zdp.

We now quantify the �di�erence� between the distributions D0,D1 from the perspective
of what we call λ-tests. For λ ∈ [d], we de�ne a λ-test to be a vector u ∈ Zdp with precisely
λ non-zero entries, i.e., wt(u) = λ. For a distribution Dt and λ ∈ [d], let the matrix A(t,λ)

be the transition matrix of a Markov chain whose states are all the λ-tests, and whose
transitions are according to Dt, i.e., at a λ-test u, the process picks π ∈ Dt and moves to
state π(u) (which is also a λ-test). In other words, a row corresponding to u in A(t,λ) is a
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vector, that has, for every λ-test w, a coordinate of value Prπ∈Dt [π(u) = w]. We denote this
row by A(t,λ)

u . Note that the matrix A(t,λ) is symmetric (since Dt is symmetric) and thus it
is doubly-stochastic.
De�nition 7.4.1. The λ-test distinguishability of D0,D1, denoted ∆λ, is the maximum,
over all λ-tests u, of the total variation distance between the distributions A(0,λ)

u and A(1,λ)
u .

We can also write ∆λ using matrix norms.
De�nition 7.4.2. For matrix B ∈ Mn,n(R) and p ∈ [1,∞], the p-norm of B is de�ned by
‖B‖p = max{‖Bv‖p : v ∈ Cn, ‖v‖p = 1}.

In particular, ‖B‖∞ = maxi∈[n]

∑
j∈[n] |Bij | for all B ∈Mn,n(R).

Fact 7.4.3. ∆λ = ‖A(0,λ) −A(1,λ)‖∞/2.
Later (in Fact 7.4.8) we shall use known inequalities between di�erent matrix norms (in

particular `∞ and `2).
The following lemma bounds the advantage achieved by HA,HB in terms of the λ-test

distinguishability ∆λ of distributions D0 and D1 for any pair of distributions D0,D1. Note
that we have not yet speci�ed the distributions D0 and D1 themselves. We will specify the
distributionsD0 andD1 in Section 7.5, thus completing the de�nition of the hard distribution
µ̃.
Lemma 7.4.4. Consider HA,HB : Zdp → {−1,+1} and ρ ∈ (0, 1). If each µt, for t ∈ {0, 1},
is de�ned as above from a symmetric distributions Dt over permutation operations, then

Pr
µ0

[HA(x) 6= HB(y)]− Pr
µ1

[HA(x) 6= HB(y)] ≤ max
λ∈[d]

∆λρ
λ.

Proof. For t ∈ {0, 1}, de�ne C(t) , Eµt

[HA(x)HB(y)
]
to be the correlation between the

two boolean functions. Note that, Prµt [HA(x) 6= HB(y)] = 1
4Eµt

[HA(x)−HB(y)
]2 =

1/2− C(t)/2. Thus,

Pr
µ0

[HA(x) 6= HB(y)]− Pr
µ1

[HA(x) 6= HB(y)] =
C(1) − C(0)

2
.

We will show that C(1)−C(0) ≤ 2maxλ∈[d] ∆λρ
λ. For this purpose, it is more convenient

to express each C(t) in terms of the Fourier coe�cients of HA and HB. Recall that µt is
generated by picking a random x, and constructing y from x by adding to it the noise Nρ

and then applying a random permutation drawn from Dt, namely, y = π(x + Nρ), where
π ∈ Dt. Let µt|x denote the distribution µt conditioned on the value of x. Thus,

Eµt

[HA(x)HB(y)
]

= Ex∈Zd
p

[HA(x) · Eµt|x
[HB(y)

]]

De�ne f (t)(x) , Eµt|x
[HB(y)

]
. Then

f (t)(x) = ENρ

[
Eπ←Dt

[HB(π(x+Nρ))
]]
.

Since C(t) = Ex
[HA(x)f (t)(x)

]
, we can switch to the Fourier basis by applying Parseval's

identity, and get
C(t) =

∑

u∈Zd
p

(̂HA)u(̂f (t))u, (7.9)
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where (̂HA)u and (̂f (t))u are the Fourier coe�cients of HA and f (t) respectively.
The next proposition, which we shall prove shortly, expresses the level λ Fourier coef-

�cients of f (t) in terms of those of HB. Let
(
(̂f (t))u

)
u:wt(u)=λ

be the vector of the Fourier

coe�cients of f (t) indexed by u's of weight wt(u) = λ. De�ne
(
(̂HB)u

)
u:wt(u)=λ

similarly.

Proposition 7.4.5. For all λ ∈ [d] and HB : Zdp → C,
(
(̂f (t))u

)
u:wt(u)=λ

= ρλA(t,λ) ·
(
(̂HB)u

)
u:wt(u)=λ

(7.10)

This proposition naturally leads us to break each C(t) into the terms corresponding to
each Fourier level λ. De�ne the λth-correlation to be

C
(t)
λ ,

∑

u∈Zd
p:wt(u)=λ

(̂HA)u(̂f (t))u. (7.11)

Then, C(1) − C(0) =
∑d

λ=0

(
C

(1)
λ − C(0)

λ

)
. We can now bound each C(1)

λ − C(0)
λ in terms of

∆λ and ρ.
Let ωAλ =

∥∥∥∥
(
(̂HA)u

)
u:wt(u)=λ

∥∥∥∥
2

be the `2-weight of the level λ Fourier coe�cients of HA,

and de�ne similarly ωBλ . By Parseval's identity,
∑d

λ=0

(
ωAλ

)2 = Ex
[
HA(x) · HA(x)

]
= 1,

and similarly
∑d

λ=0

(
ωBλ

)2 = 1.

Proposition 7.4.6. For all λ ∈ [d],

C
(1)
λ − C(0)

λ ≤ 2∆λρ
λ · ωAλ ωBλ .

We will prove the proposition shortly by a straightforward calculation. In addition,
C

(1)
0 = C

(0)
0 because the 0-th level Fourier coe�cient of f (t) equals Ex∈Zd

p

[
f (t)(x)

]
=

Ey∈Zd
p

[HB(y)
]
, which does not depend on t ∈ {0, 1}. Given the above proposition, we

thus have

C(1) − C(0) =
d∑

λ=0

(
C

(1)
λ − C(0)

λ

)
≤

d∑

λ=1

2∆λρ
λ · ωAλ ωBλ

≤
d∑

λ=1

2∆λρ
λ ·

(
ωAλ

)2 +
(
ωBλ

)2

2
≤ 2max

λ∈[d]
∆λρ

λ,

where we used the geometric�arithmetic mean inequality. This �nishes the proof of Lemma
7.4.4.

It remains to prove Propositions 7.4.5 and 7.4.6.

Proof of Proposition 7.4.5. De�ne a new function g(t) : Zdp → R as

g(t)(z) , Eπ←Dt

[HB(π(z))
]
.
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Then f (t) = Tρg
(t), and thus (̂f (t))u = (̂g(t))u · ρwt(u) for all u ∈ Zdp (by Fact 7.1.2). It

remains to prove that
(
(̂g(t))u

)
u:wt(u)=λ

= A(t,λ) ·
(
(̂HB)u

)
u:wt(u)=λ

(7.12)

Similarly to the operator Tρ, we de�ne the operator Ot as (OtHB)(x) , Eπ←Dt

[HB(π(x))
]
.

Since g(t) = OtHB, we proceed to analyze how the operator Ot works on the Fourier coe�-
cients of a function HB.
Fact 7.4.7. For a permutation operation π, de�ne Pπ to be an operator on functions ψ :
Zdp → R, given by (Pπψ)(x) , ψ(π(x)). Then, (̂Pπψ)u = ψ̂π(u).

Now, the operator Ot de�ned earlier is simply a convex combination of several Pπ, where
π is drawn from Dt. Thus, with the above fact, for every u ∈ Zdp,

(̂g(t))u = ̂(OtHB)u = Eπ←Dt

[
(̂HB)π(u)

]
. (7.13)

Consequently, the vector of level λ Fourier coe�cients of g(t) can be written as a product
of the matrix A(t,λ) and the vector of the (same) level λ Fourier coe�cients of HB, which
proves Proposition 7.4.5.

We will need the following fact for the proof of Proposition 7.4.6. Recall that ‖A‖p
denotes the p-norm of such a matrix A, as per De�nition 7.4.2.
Fact 7.4.8. Let B ∈Mn,n(R) be a symmetric matrix. Then, ‖B‖2 ≤ ‖B‖∞.
Proof. It is known that ‖B‖1 = maxj∈[n]

∑
i∈n |Bij | and ‖B‖∞ = maxi∈[n]

∑
j∈[n] |Bij |, and

since B is symmetric, these two norms are equal. By Riesz-Thorin interpolation theorem,
‖B‖2 ≤ max{‖B‖1, ‖B‖∞} = ‖B‖∞. (The Riesz-Thorin interpolation theorem states that
for every 1 ≤ p < q < r ≤ ∞ and a real matrix A, we have ‖A‖q ≤ max{‖A‖p, ‖A‖r}.)
Proof of Proposition 7.4.6. For every λ, the matrix A(t,λ) is symmetric, and so is A(1,λ) −
A(0,λ). Thus,

C
(1)
λ − C

(0)
λ =

∑

u∈Zd
p:wt(u)=λ

(̂HA)u ·
((̂
f (1)

)
u
− (̂

f (0)
)
u

)

≤
∥∥∥∥
(
(̂HA)u

)
u:wt(u)=λ

∥∥∥∥
2

·
∥∥∥∥∥
((̂
f (1)

)
u
− (̂

f (0)
)
u

)

u:wt(u)=λ

∥∥∥∥∥
2

= ωAλ ·
∥∥∥∥∥ρ

λ
(
A(1,λ) −A(0,λ)

)(
(̂HB)u

)

u:wt(u)=λ

∥∥∥∥∥
2

≤ ρλ · ωAλ ·
∥∥∥A(1,λ) −A(0,λ)

∥∥∥
2

∥∥∥∥
(
(̂HB)u

)
u:wt(u)=λ

∥∥∥∥
2

≤ ρλ · ωAλ ωBλ ·
∥∥∥A(1,λ) −A(0,λ)

∥∥∥
∞

= 2∆λ · ρλ · ωAλ ωBλ ;

where we used Eqn. (7.11), Cauchy-Schwarz, Proposition 7.4.5, De�nition 7.4.2, Fact 7.4.8,
and De�nition 7.4.3, respectively.
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7.4.2 Proof of Theorem 7.0.6
We proceed to proving Theorem 7.0.6, using the machinery developed in Sections 7.2 and
7.4.1. Recall that we still need to exhibit a suitable hard distribution. We outlined the
construction of our hard distribution in Section 7.4.1 ; the construction relies on two dis-
tributions D0 and D1 which were not speci�ed. The next lemma asserts that the desired
hard distribution exists. More precisely, it asserts that it can be constructed to satisfy the
required properties, such as a small λ-test distinguishability.
Lemma 7.4.9 (Hard Distribution). There exist constants θ, c1, c2, d0 > 0, such that for all
d > d0, p > d3, 1 < α ≤ O( log d

log log d), d0.1 ≤ R ≤ d0.49, there exist symmetric distributions D∗0
and D∗1 over permutation operations on Zdp (as de�ned in Section 7.4.1) with the following
guarantees.
(a). For all λ ≥ 1, the λ-test distinguishability of D∗0 and D∗1 is ∆λ ≤ c1 · λ logα

log d · Rd .

(b). De�ne each distribution µt from D∗t as described in Section 7.4.1, setting ρ = 1−θR/αd .
De�ne the distribution µ̃t to be the restriction (i.e. conditioning) of µt to the event
that the sampled pair (x, y) ∈ µt is legal, in the sense that x, y ∈ Zdp are permutations
and are respectively a far pair (for t = 0) or a close pair (for t = 1). Then for each
t ∈ {0, 1}, the total variation distance between µ̃t and µt is at most d−c2.

We prove this lemma separately in Section 7.5, where we include a full description of D∗0
and D∗1. Here, we use the lemma to complete the proof of the main theorem.

Proof of Theorem 7.0.6. First, consider the hard distribution given by Lemma 7.4.9. Next,
by Lemma 7.2.1, there must exist functions HA,HB such that

Pr
µ̃0

[HA(x) 6= HB(y)]− Pr
µ̃1

[HA(x) 6= HB(y)] ≥ 1
3 · 2−CC

Ulamd
α,R .

Applying Lemma 7.4.4 to the distributions µ0, µ1, and using the fact that µ̃0 and µ̃1, re-
spectively are statistically close to µ0 and µ1 (Lemma 7.4.9(b)), we deduce that

Pr
µ̃0

[HA(x) 6= HB(y)]− Pr
µ̃1

[HA(x) 6= HB(y)] ≤ max
λ∈[d]

∆λρ
λ + d−c2 .

Combining the two inequalities above and plugging in the upper bound on ∆λ and the value
of ρ from Lemma 7.4.9(a), we have

1
3 · 2−CC

Ulamd
α,R ≤ max

λ∈[d]

[
c1 · λ logα

log d · Rd ·
(
1− θR/αd

)λ]
+ d−c2

≤ c1
θ · α · logα

log d ·max
x≥0

x · e−x + d−c2

= O
(
α logα
log d

)
,

which concludes the proof of Theorem 7.0.6.

7.5 The Hard Distribution for the Ulam Distance
In this section we prove Lemma 7.4.9. Namely, we construct our hard distribution for the
Ulam distance, and show the required properties for Theorem 7.0.6 to hold.
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We start by giving the detailed construction of our hard distribution µ̃ = µ̃0+µ̃1

2 . Then,
in Sections 7.5.1 and 7.5.2 we prove respectively λ-test indistinguishability (part (a)) and
statistical closeness (part (b)) properties of the hard distribution.

The hard distribution construction follows the outline given in Section 7.4.1. We �rst
specify the distributions D∗0,D∗1 over permutation operators, which forms the bulk of the
construction. Once these distributions are speci�ed, we obtain the intermediary distributions
µ0 and µ1 as already described in Section 7.4.1. We �nalize the description by constructing
µ̃t from µt, for each t ∈ {0, 1}, by conditioning on the pair (x, y) ∈ µt being a legal pair,
namely that x, y ∈ Zdp are permutations and are respectively a far pair (for t = 0) or a close
pair (for t = 1).

Fix ε0 , 1/2 and select ε1 = Θ( 1
α) as follows. Let β , 1−ε1

1−ε0 = 2(1 − ε1), and ξ1 ,
dlog2(C1α)e, for a su�ciently large constant C1 > 0 (in particular C1 = 805 will su�ce).
Let ε1 be the solution to the equation (1− ε1) = ε1β

ξ1 satisfying ε1 ≤ 2
C1α

. The existence of
ε1 follows from the following claim, whose proof is deferred to the end of the construction.

Claim 7.5.1. Let α > 1 and C1 > 1 be su�ciently large. Then there exists ε1 with 1
3C1α

<

ε1 ≤ 2
C1α

such that (1− ε1) = ε1(2(1− ε1))ξ1, where ξ1 = dlog2(C1α)e.

We thus have, by construction,

ε0 = (1− ε0) = (1− ε1)β−1 = ε1β
ξ1−1. (7.14)

For each t ∈ {0, 1}, we de�ne the distribution µt over (x, y) such that ed(x, y) is almost
surely Θ(εtR). Choose x ∈ Σd = Zdp uniformly at random. Then set z , x + Nρ where
Nρ ∈ Zdp is a noise of rate ρ , 1− ε1R/d (i.e., each position is randomized with probability
1 − ρ = ε1R/d). We shall obtain y from z, by applying a number of random rotation
operations, each picked independently from a speci�c distribution. We use the following
notation:

• m , 0.01 · logβ d = Θ(log d) is the number of possible lengths of a rotation operation;

• Lmin , d0.01 determines the minimum length of a rotation operation (modulo a factor
of β);

• w , C2 · R
m·Lmin

is the number of rotation operations that we apply, for a su�ciently
large constant C2 > 0 to be determined later (in Section 7.5.2).

Generate a sequence (r1, r2, . . . , rw) of w rotations by picking each ri i.i.d. according to
the following distribution Drot

t :

1. Pick li ∈ [m] randomly so that Pr[li = l] = β−l

ζ for each l ∈ [m], where ζ =
∑m

l=1 β
−l

is the normalization constant.

2. Pick a starting position si ∈ [d] uniformly at random, and rotate the block that starts
at position si and has length (with wrap-around) Li = βliLmin by εtLi positions,
either to the right or to the left, at random. We choose ri at random from the set{

(R̃s,Li)
εtLi | s ∈ [d], R̃ ∈ {−→R,←−R}

}
.

We note that (R̃s,Li)
εtLi is not well de�ned when εtLi or Li are not integers. Over-

loading the notation, we de�ne (
−→
R s,Li)

εtLi for non-integer εtLi, Li as follows. Let B1
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be the block that starts at position si and has length b(1− εt)Lic, and let B2 be the
block immediately following B1 of length bεtLic, i.e.

B1 = [s : s+ b(1− εt)Lic − 1], B2 = [s+ b(1− εt)Lic : s+ b(1− εt)Lic+ bεtLic − 1].

Then, (
−→
R s,Li)

εtLi swaps blocks B1 and B2. We de�ne (
←−
R s,Li)

εtLi similarly.

To obtain y, we apply to z = x+Nρ the sequence of rotations r1, . . . , rw, i.e.,

y , rw(rw−1(. . . r1(z) . . .)) = (rw ◦ . . . ◦ r2 ◦ r1)(x+Nρ).

In the language of Section 7.4.1, the distribution D∗t of permutation operations is simply the
distribution of π = rw ◦ rw−1 ◦ . . . ◦ r1, where r1, . . . rw are drawn independently from Drot

t .
Intuitively, each rotation operation ri, or more precisely its distribution Drot

t , is designed
to achieve the following goal. Consider a position j ∈ [d] and assume for simplicity j ∈
[0.1d, 0.9d]. Let the random variable Zt,j ∈ Z be the displacement (change in position) of
position j under a (random) rotation operation ri ∈ Drot

t , i.e. Zt,j ∈ Z is the unique value
such that ri(ej) = ej+Zt,j , where ek denotes the k-th standard basis vector. By construction,
Zt,j is symmetric around 0, i.e. Pr[Zt,j = k] = Pr[Zt,j = −k], and its distribution does
not depend on j, i.e. Zt,j and Zt,j′ have the same distribution (but they are correlated).
Moreover, its support, i.e. values k > 0 with probability Pr[Zt,j = k] > 0, forms a geometric
sequence (because the block length L has a geometric distribution). Let us now condition
on the event that position j is included in the rotation block, i.e. Zt,j 6= 0. Then the
distribution of Zt,j is almost uniform over the support � this follows from the distribution
of L and of s, and by Eqn. (7.14). Furthermore, the distributions of Z0,j and Z1,j (when we
condition on them being nonzero) are almost identical, because their supports di�er only
at the boundaries, i.e. at the smallest and largest displacements, again due to Eqn. 7.14,
and they are both almost uniform. We repeat the rotation operation many times in order
to obtain a high concentration in the distance between y and z.

To �nalize the construction, it remains to de�ne µ̃t for t ∈ {0, 1}. We note that we cannot
set µ̃t to be exactly µt because the latter may sometimes generate pairs (x, y) that are not
far or close respectively, or are not even permutations altogether. (x and y are not always
permutations since each of the two strings is uniformly at random and may have a multiple
occurrence of the same symbol.) We thus de�ne µ̃0 to be the distribution µ0 restricted to
(i.e. conditioned on) pairs of permutations (x, y) with ed(x, y) > R, and similarly µ̃1 is the
distribution µ1 restricted to pairs of permutations with ed(x, y) ≤ R/α.

It only remains to prove Claim 7.5.1, namely that the desired ε1 exists.

Proof of Claim 7.5.1. De�ne function f(x) : [0, 1] → R as f(x) = x · (1 − x)ξ1−12ξ1 − 1.
Note that ε1 is the solution to the equation f(x) = 0. For x = 1/(3C1α), f(x) ≤ 1

3C1α
(1−

1
3C1α

)ξ1−1·2log2(C1α)+1−1 < 0. Similarly, for x = 2
C1α

, f(x) ≥ 2
C1α

(1− 2(ξ1−1)
C1α

)·2log2(C1α)−1 ≥
2(1− 2(log2(C1α)−1)

C1α
)− 1 > 0 provided C1 is a su�ciently large constant. By the continuity

of f(x), there exists some x ∈ [ 1
3C1α

, 2
C1α

] satisfying f(x) = 0.

In the rest of this section we prove the two properties required from our hard dis-
tribution, stated in Lemma 7.4.9: that D∗0 and D∗1 have small λ-test distinguishability
(Lemma 7.4.9 (a)), and that each µ̃t is very close to µt, for both t ∈ {0, 1} (Lemma 7.4.9 (b)).

Here and throughout the big O(·) notation may hide dependence on constants used in
the construction of the hard distribution, namely C1 and C2. Furthermore, although the
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parameters β and ζ are not constants (they depend on α), we can bound 1.5 < β < 2, which
guarantees that 1

1−β−1 ≤ O(1) and 1
ζ ≤ β ≤ O(1).

7.5.1 λ-test indistinguishability
We prove Lemma 7.4.9 (a) via the following lemma.

Lemma 7.5.2. Let ∆λ be the λ-test distinguishability of D∗0 and D∗1. Then for all λ ≥ 1,
we have ∆λ ≤ O

(
λ logα

log d · Rd
)
.

Proof. Fix a λ-test u ∈ Zdp and let δλ(u) = maxT⊆Zd
p

∣∣Pr[r(0)(u) ∈ T ]− Pr[r(1)(u) ∈ T ]
∣∣ be

the total variation distance between the distributions r(0)(u) and r(1)(u), where r(t) ← Drot
t

for t ∈ {0, 1}. The heart of this lemma is the following bound, which we shall prove below:

δλ(u) ≤ O
(
λ logα · Lmin

d

)
. (7.15)

We shall also prove shortly the claim that ∆λ ≤ w ·maxu δλ(u). The lemma then follows
immediately from Eqn. (7.15) and this claim, by plugging the former into the latter and
recalling w = C2 · R

m·Lmin
is the number of rotation operations. Since λ logα

log d · Rd > 1 for
λ ≥ d0.95, it actually su�ces to prove (7.15) only for λ < d0.95.

We now prove the above claim, that ∆λ ≤ w · maxu δλ(u), by induction. Let vti =
r
(t)
i (r(t)i−1(. . . r

(t)
1 (u) . . .)) for t ∈ {0, 1} and i ∈ [w]. We prove that, for any T ⊆ Zdp, we have

|Pr[v0
i ∈ T ] − Pr[v1

i ∈ T ]| ≤ i ·maxv δλ(v). The base case i = 1 holds by the de�nition of
δλ, and so we turn to the inductive step:

Pr[v0
i ∈ T ] =

∑
v

Pr[v0
i−1 = v] Pr[r(0)

i (v) ∈ T ]

≤
∑
v

Pr[v0
i−1 = v]

(
Pr[r(1)

i (v) ∈ T ] + δλ(v)
)

≤ max
v
δλ(v) +

∑
r

Pr[r(1)
i = r] Pr[r(v0

i−1) ∈ T ]

≤ max
v
δλ(v) +

∑
r

Pr[r(1)
i = r]

(
Pr[r(v1

i−1) ∈ T ] + (i− 1) ·max
v
δλ(v)

)

= i ·max
v
δλ(v) + Pr[v1

i ∈ T ].

Proving the same inequality with the roles of t = 0 and t = 1 reversed, we obtain that
∆λ = maxT⊆Zd

p
|Pr[v0

w ∈ T ]− Pr[v1
w ∈ T ]| ≤ w ·maxu δλ(u).

In the rest of the proof of Lemma 7.5.2, we prove the bound (7.15). The proof consists
of two parts. The �rst part proves the bound for λ = 1, and contains the main intuition
why our distribution is hard. The second part builds on the �rst one to show the bound for
general λ.

Part 1: λ = 1. We prove that δ1(u) ≤ O(logα · Lmin
d ) next. In this part, we shall assume

that L and εtL are integers, deferring the full treatment of this technicality to the second
part.

Since λ = 1, we have only one non-zero entry in u, say at position j. For t ∈ {0, 1}, let jt
be the random variable denoting the position of the symbol uj in the vector r(t)(u) obtained
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by applying the random rotation r(t) ← Drot
t on u. Also, let Zt be the displacement of jt

with respect to j on the cycle Zp, and namely Zt = (jt − j + d/2)(mod d)− d/2 (where the
addition/subtraction of d/2 is for the purpose of accounting for string boundaries). It is not
hard to see that the distribution of Zt does not depend on the value of j.

The total variation distance between the distributions of r(0)(u) and of r(1)(u) equals to
the total variation distance between Z0 and Z1. We compute the latter via its complement,
i.e. the probability mass that is �common� to the two distributions, which is, formally,∑

z∈[−d,d] mint∈{0,1} Prr(t) [Zt = z].
First, we can compute the probability that Zt = 0, i.e., the symbol uj remains at position

j, as follows:
Pr[Zt = 0] =

d− E [L]
d

= 1−m · Lmin

ζd
,

irrespective of the value of t ∈ {0, 1}.
Next, consider the case when Zt 6= 0 and note that Prr(0) [Z0 6= 0] = Prr(1) [Z1 6= 0] =

m · Lmin
ζd . We show that, conditioned on Zt 6= 0, the variable Zt is uniform over most of its

support, denoted St. Moreover S0 and S1 have almost the same size and almost completely
overlap. Formally, we prove the following claim.
Claim 7.5.3. There exists a set S ⊂ Z \ {0} satisfying:
• There is ν > 0 such that for each t ∈ {0, 1} and z ∈ S we have Prr(t) [Zt = z] = ν; and

• For each t ∈ {0, 1} we have Prr(t) [Zt ∈ S] ≥ m−ξ1
m · Prr(t) [Zt 6= 0].

We �rst show how Claim 7.5.3 lets us prove that δ1(u) ≤ O(logα · Lmin
d ). Indeed, one

can observe that δ1(u) is bounded by the probability that Prr(0) [Z0 6∈ S ∪{0}] = Prr(1) [Z1 6∈
S ∪ {0}], which we can bound as

δ1(u) ≤ 1− Pr
r(t)

[Zt = 0]− Pr
r(t)

[Zt ∈ S] ≤ ξ1
m
· Pr
r(t)

[Zt 6= 0] = O(logα) · Lmin

ζd
.

Proof of Claim 7.5.3. We show the claim for S =
{±(1− ε1)βlLmin | l = 1, . . . ,m− ξ1

}
and

ν = 1
2 · Lmin

ζd .
Let us consider the case that Zt 6= 0. Then, the magnitude of the displacement, |Zt|,

must be either εtL or (1− εt)L where L = βlLmin for some l ∈ [m]. In particular, Zt 6= 0 i�
the position j falls inside the rotation block of the operation r(t), and either: (i) j falls into
the bigger part of size (1− εt)L (that does not wrap-around), hence |Zt| = εtL; or (ii) j falls
into the smaller part of size εtL (that does wrap-around), hence |Zt| = L− εtL = (1− εt)L.
Moreover, conditioned on the magnitude of Zt, the sign of Zt is equi-probable to be either
positive or negative (depending on whether the rotation block rotates to the right or left).

When t = 0, we can compute the probability that |Z0| = 1
2L = 1

2β
lLmin for some l ∈ [m]

as follows. We have Z0 = L/2 when we choose block length L = βlLmin, which happens
with probability β−l/ζ, and additionally either (i) position j is inside the �bigger� part of
the block, of size (1− ε0)L = L/2, and the block moves to right, or (ii) position j is inside
the �smaller� part of the block, of size ε0L = L/2, and the block moves to left. Formally,

Pr
r(0)

[Z0 = L/2] = Pr
r(0)

[Z0 = −L/2] = β−l

ζ · (1−ε0)βlLmin

d · 1
2 + β−l

ζ · ε0β
lLmin
d · 1

2 = Lmin
ζd · 1

2 = ν.

Note that z = 1
2β

lLmin may be written as z = (1− ε1)βl−1Lmin (using Eqn. (7.14)) and thus
z ∈ S whenever l ∈ {2, . . .m− ξ1 + 1}.
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Now let t = 1. When |Z1| = ε1β
l+ξ1Lmin = (1− ε1) · βlLmin ∈ S for l ∈ {1, . . . ,m− ξ1}

(the equality here is by Eqn. (7.14)), we again have that

Pr
r(1)

[Z1 = ε1β
l+ξ1 ] = β−l−ξ1

ζ · (1−ε1)βl+ξ1Lmin

d · 1
2 + β−l

ζ · ε1β
lLmin
d · 1

2 = Lmin
ζd · 1

2 = ν.

Finally, note that Prr(t) [Zt ∈ S] =
∑

z∈S Prr(t) [Zt = z] = 2(m−ξ1)·ν = m−ξ1
m ·Prr(t) [Zt 6=

0]. This concludes the proof of Claim 7.5.3.

Part 2: λ ≥ 2. When we have λ ≥ 2 non-zero entries in u, the intuition is to group these
non-zero entries into one or more �atomic intervals� and then reduce to the case λ = 1 with
the role of �symbol uj� being replaced by an atomic interval. For example, when there are
λ = 2 non-zero entries in u, most of the block lengths L fall into two categories:

• L is much larger than the distance between the positions of the two non-zero entries
� in this case, the two non-zero symbols from u move jointly (atomically) most of
the time, and thus the interval connecting the two symbols behaves roughly as the
�symbol uj� in the λ = 1 scenario;

• L is much smaller than the distance between the two positions � in this case, each of
the two non-zero entries can be treated independently as in λ = 1 case, and we lose
only a factor of λ (by �union bound�).

Furthermore, we can bound the number of values of L that do not satisfy one of the above
properties. A relatively straight-forward bound is O(λ2) (all pair-wise distances between the
non-zero entries), times O(ξ1) (the same extra factor as in the λ = 1 case). This analysis
would give a bound of δλ(u) ≤ O(λ3 logα · Lmin

d ). In the sequel we obtain a stronger bound,
with only a linear dependence on λ, using a more careful analysis. (For the impact of a
weaker bound see the calculation in Section 7.4.2.)

More generally, we partition the non-zero entries of u such that each part consists of
�nearby� entries, while the parts are �far� amongst themselves. We then view each part as a
contiguous A-interval (stands for atomic interval). Once we manage such an approximation,
we have several A-intervals (at most λ), and we expect each one to move atomically: all non-
zero entries from the same A-interval will move the same direction by the same displacement
most of the time. The main challenge lies in the fact that the notion of nearby entries depends
on the length L of the rotation block, and we say two non-zero entries are nearby if their
positions di�er by at most L. Thus, for each possible block length L, we have a possibly
di�erent partition of entries into A-intervals (partitions are progressively coarser with bigger
L). The main technical work is to analyze the structure of these A-intervals over all lengths
L.

We proceed with a complete proof below. For a block length L = βlLmin, we de�ne
the graph GL as follows. GL is an undirected graph on λ vertices, where each vertex
corresponds to a non-zero entry in u. For convenience, we use the term �entry� when we
refer to the position of a non-zero entry of u, and equivalently a vertex of GL (in contrast,
we will use the term node for another graph structure de�ned later). We connect two entries
i, j ∈ [d] if |i − j|∗ ≤ L, where |i − j|∗ = min{|i − j|, d − |i − j|} computes distance on the
d-cycle. For a graph GL, we focus on its connected components, which may be viewed as
intervals in Zd. Speci�cally, to each connected component C ⊂ V we assign the interval
I(C), an interval de�ned as the minimal interval (with wrap-around) on Zd that contains
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all entries in C. Overloading the notation, we write an interval I(C) = [i, j] to mean that
I(C) = {i, i + 1, . . . , j} if i ≤ j and I(C) = {i, i + 1, . . . , d, 1, 2, . . . j} if j < i. The length
of interval I = [i, j] is len(I) = |I| = (j − i + 1)(mod d). Note that, for every connected
component C, every two consecutive entries in I(C) are at distance at most L; thus, the
length of any interval I(C) can be at most L ·λ < d0.99; also if I(C) = [i, j] then both i and
j are non-zero entries of u.

An A-interval is then an interval I(C) that corresponds to some connected component
C. Each block length L induces potentially di�erent graph GL, that in turn induces di�erent
set of A-intervals. The following observation relates A-intervals induced by di�erent GL's.

Observation 7.5.4. If two entries are in the same A-interval (equivalently, connected com-
ponent) in GL for some L, then there are also in the same A-interval in GL′ for any L′ ≥ L.

We use this observation to de�ne a forest on all the A-intervals, as follows. The forest
consists ofm levels, where nodes at level l ∈ [m] correspond to the A-intervals for L = βlLmin

(i.e. the connected components in GL). For a forest node v at level l we write I(v) for the
corresponding A-interval. The edges in the forest are de�ned as follows: for two forest nodes
v1, v2 on two consecutive levels, l and l+1 respectively, we connect v1 to v2 i� I(v1) ⊆ I(v2).
This construction is well-de�ned due to Observation 7.5.4. Nodes at level 1 will be called
leaves. Notice that every forest node at level l > 1 indeed has at least one edge to a node at
level l − 1, i.e. non-leaf nodes have at least one child. Let nl ∈ [λ] be the number of nodes
at level l.

We now wish to bound the error incurred by considering an A-interval to be an atomic
object. Speci�cally, a too long A-interval is likely to move not atomically, in the sense that
the interval is �cut� by the rotation block. We bound the error of our �approximation� using
the probability that a random position s ∈ [d] (one of the two block boundaries) falls inside
these A-intervals at a random level l. The latter probability is proportional to expected sum
of lengths of the A-intervals of GL, when we choose the block length L randomly according
to the distribution Drot

t .

Claim 7.5.5. Let s ∈ [d] be chosen uniformly at random and let l ∈ [m] be chosen randomly
with probability β−l/ζ. Then,

Pr
s,l

[
s is inside one of the A-intervals at level l

]
≤ O

(
λ
Lmin

d

)
.

Proof. Consider any two consecutive non-zero entries of u and let J be the interval between
them (with wrap-around), including one of the endpoints, say the left one. We compute
next the probability that s is contained in this interval J , and interval J is contained in an
A-interval I(v) for a forest node v at level l. Note that summing this probability over all λ
intervals J gives the �nal quantity we want.

By de�nition, an interval J is inside an A-interval at level l i� |J | ≤ βlLmin. Thus, for a
�xed J , the probability that both s ∈ J and J is contained in an A-interval at level l is at
most

|J |
d
·

∑

l∈[m]: |J |≤βlLmin

β−l

ζ
≤ |J |

d
· Lmin

ζ · |J | ·
1

1− β−1
≤ O

(
Lmin

d

)
.

We have exactly λ such intervals J , and thus the total contribution is O(λLmin
d ).
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We now continue with computing the total variation distance δλ(u) between r(0)(u) and
r(1)(u) where r(0) ∈ Drot

0 and r(1) ∈ Drot
1 . As in part one (λ = 1), we will bound the total

variation distance between them by estimating the probability mass �common� to the two
distributions.

First we compute the probability that all non-zero entries of u stay put (as in part one).

Claim 7.5.6. For each t ∈ {0, 1}, we have that

Pr
r(t)

[r(t)(u) = u] ≥ 1−O
(
λ
Lmin

d

)
−

m∑

l=1

nl · Lmin

ζd
.

Proof. The complement event is that at least one non-zero entry of u is displaced. Whenever
it occurs, at least one of the following holds:

• Left or right endpoint of the rotation block belongs to an A-interval induced by GL;
or else

• The rotation block contains inside it an entire A-interval induced by GL.

The probability of the �rst event is bounded by, using Claim 7.5.5:

2 Pr
s,L

[s is inside one of the A-intervals at level l] ≤ O
(
λ
Lmin

d

)
.

The probability of the second event can be bounded by the probability that the rotation
block includes the leftmost endpoint of some A-interval at level l:

m∑

l=1

β−l

ζ

∑

v at level l
Pr
s

[
left endpoint of I(v) is inside [s, s+ L− 1]

]
≤

≤
m∑

l=1

β−l

ζ
· nl · L

d
=

m∑

l=1

nl
Lmin

ζd

The claim follows from the last two inequalities by applying a union and then considering
the complement event.

We now prove a claim that should be seen as the analogue of Claim 7.5.3 from part
one, which characterizes the common weight of the distributions of r(0)(u) and r(0)(u) when
some entries (more precisely, A-intervals) move. In contrast to part one, here we have to
also consider the case when an A-interval does not behave atomically, i.e., when the rotation
block intersects the A-interval of some node v at a level l ∈ [m]. This will contribute some
additional error term that depends on the length of the interval I(v), and which we will
bound using Claim 7.5.5.

Let us de�ne the random variable Zt(I), for an interval I = I(v) corresponding to a
forest node v, and t ∈ {0, 1}. Zt(I) denotes the (position) displacement of the entries from
the interval I under rotation r(t) ∈ Drot

1 when the interval I moves atomically and no entry
outside I moves. We set Zt(I) = ⊥ if the interval I does not move atomically and/or some
other entry outside I moves as well under r(t).

Claim 7.5.7. There exists a set S ⊂ Z \ {0} satisfying:
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• For each interval I = I(v) corresponding to a forest node v at level l∗ ∈ {ξ1 +1, . . .m},
and for each t ∈ {0, 1} and z ∈ S,

Pr
r(t)

[Zt(I) = z] ≥ 1
2
· Lmin

ζd
− β−(l∗−ξ1) · 2 len(I)

ζd
;

• Call two intervals I(v) and I(v′) distinct if they have at least one distinct endpoint;
then

∑

z∈S

∑

distinct I=I(v)

min
t∈{0,1}

{
Pr
r(t)

[Zt(I) = z]
}
≥

m∑

l=ξ1+1

nl
Lmin

ζd
−O

(
λ
Lmin

d

)
.

Proof. We show the claim for S =
{± ⌊

(1− ε1)βlLmin

⌋ | l = 1, . . . ,m− ξ1
}
.

Fix an interval I = I(v) for a node at level l∗ ≥ ξ1 + 1. Consider the displacement
z =

⌊
ε1β

l∗Lmin

⌋
=

⌊
(1− ε1)βl∗−ξ1Lmin

⌋ ∈ S (the equality is again by Eqn. (7.14)). We now
bound Pr[Z1(I) = z], namely the probability that all the entries in I(v) are moved (atomi-
cally) z positions to the right (and all the other entries stay put), under the distribution Drot

1 .
We have Pr[Z1(I) = z] when either: i) l = l∗, interval I is completely inside the �bigger�
part of the block, of size

⌊
(1− ε1)βlLmin

⌋
, and the block moves to right, or ii) l = l∗ − ξ1,

interval I is completely inside the �smaller� part of the block, of size
⌊
ε1β

l−ξ1Lmin

⌋
, and the

block moves to left. Note that in both cases all entries outside I stay put as they are at
(position) distance at least βl∗Lmin +1 from I and thus cannot be inside the rotation block.
Formally,

Pr
r(1)

[Z1(I) = z] = Pr
r(1)=(R̃s,L)ε1L, L=βlLmin

[
Z1(I) = z, l = l∗, R̃ =

−→
R

]

+ Pr
r(1)=(R̃s,L)ε1L, L=βlLmin

[
Z1(I) = z, l = l∗ − ξ1, R̃ =

←−
R

]

≥ β−l∗

ζ
· 1
2
· (1− ε1)β

l∗Lmin − 1− len(I)
d

+
β−(l∗−ξ1)

ζ
· 1
2
· ε1β

l∗−ξ1Lmin − 1− len(I)
d

≥ 1
2
Lmin

ζd
− β−(l∗−ξ1)

ζ
· 2 len(I)

d
(7.16)

Similarly, we can give the exact same lower bound for each of the following four events:
Z1(I) = ±z and Z0(I) = ±z.

We can now bound the probability mass that is common to the two distributions r(0)(u)
and r(1)(u) for the events that there is a distinct interval I such that Zt(I) = z for some
z ∈ S:

∑

z∈S

∑

distinct I=I(v)

min
t∈{0,1}

{
Pr
r(t)

[Zt(I) = z]
}

≥
m∑

l=ξ1+1

∑

v at level l
Pr

[
Zt(I(v)) ∈

{
±

⌊
ε1β

lLmin

⌋}]
(7.17)

because, for each node v at level l∗ ≥ ξ1 + 1, we can consider the interval I = I(v) and
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the displacement of z = z(v) =
⌊
ε1β

l∗Lmin

⌋ ∈ S. Then all the events Zt(I(v)) = ±z(v) are
mutually exclusive (over the choice of such v), and hence we obtain the sum from Eqn. (7.17).
Furthermore, using Eqn. (7.16), we obtain:

∑

z∈S

∑

distinct I=I(v)

min
t∈{0,1}

{
Pr
r(t)

[Zt(I) = z]
}

≥
m∑

l∗=ξ1+1

2
∑

v at level l∗

(
1
2
· Lmin

ζd
− β−(l∗−ξ1)

ζ
· 2 len(I(v))

d

)

≥
m∑

l∗=ξ1+1

nl∗
Lmin

ζd
− 4

m∑

l∗=1

∑

v at level l∗
β−l∗

ζ
· len(I(v))

d
, (7.18)

where we remind that nl is the number of nodes at level l∗. The last inequality follows from
the fact that, for each interval I = I(v) of a node v at level l∗ ≥ ξ1 + 1, we can charge
len(I(v)) to lengths of the intervals of the descendants of v at level l∗ − ξ1.

Finally, observe that the last term in Eqn. (7.18), namely
∑

l∗
∑

v
β−l∗

ζ · len(I(v))
d , is equal

precisely to the probability that a random position s falls into an A-interval at level l∗,
where l∗ is chosen at random according to the distribution l∗ = l with probability β−l/ζ.
Thus we can use Claim 7.5.5 to bound it from above,

m∑

l∗=1

∑

v at level l∗
β−l∗

ζ
· len(I(v))

d
≤ O(λ) · Lmin

ζd
,

which together with Eqn. (7.18) completes the proof of Claim 7.5.7.

To summarize, the total probability mass that we accounted to be common for t = 0
and t = 1 is the sum of (our lower bounds on) the probability that all entries stay put, plus
the probability that exactly one distinct interval I = I(v) is displaced by precisely z ∈ S
positions. Combining Claims 7.5.6 and 7.5.7, and using the trivial bound of nl ≤ λ for all
l ∈ [m], we obtain:

1−δλ(u) ≥ 1−O
(
λ · Lmin

d

)
−

m∑

l=1

nl ·Lmin

ζd
+

m∑

l=ξ1+1

nl
Lmin

ζd
−O

(
λ
Lmin

d

)
≥ 1−O(λξ1)·Lmin

ζd
.

Finally, using the fact that ξ1 = O(logα), we conclude Eqn. (7.15), which completes the
proof of Lemma 7.5.2.

7.5.2 Statistical closeness of the distributions µ̃t and µt

We prove Lemma 7.4.9 (b) via the following lemma.

Lemma 7.5.8. For every t ∈ {0, 1}, the total variation distance between µ̃t and µt is at
most d−Ω(1).

Proof. First we recall that µ̃t is equal to the distribution µ conditioned on the fact that the
generated pair (x, y) ∈ µ is legal, i.e., both x and y are permutations and (x, y) are far or
close for t = 0 or t = 1 respectively. Since both x and y are random from Zdp, and p > d3,
then x and y are both permutations with probability at least 1−O(1/d).
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Thus, the total variation distance between µ̃0 and µ0 is at most Prµ0 [ed(x, y) ≤ R] +
O(1/d). Similarly, total variation distance between µ̃1 and µ1 is at most Prµ1 [ed(x, y) >
R/α]+O(1/d). Thus, it su�ces to prove that Prµ0 [ed(x, y) ≤ R] ≤ d−Ω(1) and Prµ1 [ed(x, y) >
R/α] ≤ d−Ω(1). Remember that x is chosen at random, then z = x+Nρ, and y is obtained
from z via a sequence of rotation operations.

We choose the constant C2 = 20ζ/ε0 = 40ζ, and condition on the event that x, y, and
z are all permutations, which happens with probability ≥ 1−O(1/d). We can describe the
distribution µt also as follows. Start with a permutation z, and let x be the permutation
obtained by modifying every coordinate in z to a new symbol independently with probability
1 − ρ. We may assume, without loss of generality (by renaming symbols), that z is the
identity permutation of length d, i.e. for all i ∈ [d] we have z(i) = i, and furthermore with
probability ρ we have x(i) = z(i) and x(i) = i+d otherwise. Next, let y be the permutation
obtained from z by applying w random rotation operations chosen from Drot

t .
It will then su�ce to prove the following two claims.

Claim 7.5.9. For both t ∈ {0, 1},

Pr
µt

[
ed(x, z) ≤ 2ε1R

]
≥ 1− e−dΩ(1)

.

Claim 7.5.10. For both t ∈ {0, 1},

Pr
µt

[
0.1 ≤ ed(z, y)

R · C2εt/ζ
≤ 10

]
≥ 1− d−Ω(1).

We can now obtain the lemma statement from the above two claims, using a union
bound, and applying the triangle inequality | ed(x, y)−ed(z, y)| ≤ ed(x, z) (see also Figure 7-
2). Indeed, we obtain (i) that for the distribution µ0, with high probability, ed(x, y) ≥
(0.1C2ε0/ζ − 2ε1)R = (2 − 2ε1)R > R; and (ii) that for the distribution µ1, with high
probability, ed(x, y) ≤ (10C2ε1/ζ + 2ε1)R = 402ε1R ≤ 804

C1α
·R < R/α.

x

y

z ≥ 2R

≤ 2ǫ1R

x

z

≤ 2ǫ1R

y

≤ 400ǫ1R

Figure 7-2: The relative positions of x, y, z under the distributions µ0 and µ1 respectively.

It remains to prove Claims 7.5.9 and 7.5.10.

Proof of Claim 7.5.9. One can verify that ed(x, z) is upper bounded by the number of sub-
stitutions performed when constructing x from z. This number of substitutions may be
bounded using a straightforward Cherno� bound, Fact 2.4.4.

In our case probability of substitution is q = (1 − ρ)(1 − 1/p), where the second factor
is the probability that the substituted symbol is di�erent from the original symbol. Since
ρ = 1− ε1R/d, we get

Pr
µt

[
ed(x, z) ≤ 2ε1R

]
≥ 1− e−Ω(ε1R) ≥ 1− e−dΩ(1)

.
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Proof of Claim 7.5.10. We �rst show an upper bound on ed(z, y) by analyzing the sum of
magnitudes of all the rotation operations. Recall that there are w rotation operations; a
single rotation operation works on a block of (random) length L = βlLmin, and incurs edit
distance at most (in fact, exactly) 2bεtLc. For l ∈ [m], let the random variable Zl denote the
number of rotation operations in which the block length equals βlLmin. Observe that Zl has
Binomial distributionB(w, β

−l

ζ ) and its expectation is E[Zl] = w·β−l

ζ ≥ C2R
mLmin

· d−0.01

ζ ≥ dΩ(1).
By a straightforward Cherno� bound (Fact 2.4.4),

Pr
[
Zl ≥ 2E[Zl]

]
≤ e−Ω(E[Zl]) ≤ e−dΩ(1)

.

Taking a union bound over these events for l = 1, . . . ,m, we conclude that with high
probability

ed(z, y) ≤
m∑

l=1

(2w
β−l

ζ
· 2εtβlLmin) =

4C2εtR

ζ
.

We proceed to show a lower bound on ed(z, y), by counting inversions, i.e., pairs of
symbols (a1, b1), . . . , (ak, bk) such that each aj appears before bj in z, but aj appears after
bj in y. It is easy to verify that if the inversions are disjoint, in the sense that the symbols
a1, b1, . . . , ak, bk are all distinct, then ed(z, y) ≥ k (because in every alignment of z with y,
for each j = 1, . . . , k, at least one of aj , bj must incur an edit operation). For each of the w
rotation operations we take bεtLc pairs � simply take the bεtLc symbols that were at the
beginning of the block and match them to the bεtLc symbols that were at the end of the
block. It follows, using Cherno� bounds as above, that with probability at least 1− e−dΩ(1)

this process picks at least 1
2 · C2εtR

ζ pairs of symbols, but this count may include repetitions.
Furthermore, a pair �inverted� in one rotation operation may be inverted back by another
rotation. To mitigate this concern, �x a pair (a, b) taken at some j-th rotation operation.
The probability that symbol a was inside a rotated block in at least one other rotation is at
most (using the independence between rotations and a union bound)

(w − 1)
m∑

l=1

(
β−l

ζ
· β

lLmin

d

)
<
wmLmin

ζd
=
C2R

ζd
.

A similar argument applies to symbol b, and clearly if both a and b were not inside a rotated
block of any of the other w−1 rotations, then either (a, b) or (b, a) is an inversion between z
and y. It remains to apply a union bound over the C2εtR

2ζ pairs of symbols the above process
produces, and indeed the probability that at least one of them fails is at most

2 · C2εtR

2ζ
· C2R

ζd
≤ O

(
R2

d

)
≤ d−Ω(1).

We conclude that with probability at least 1 − d−Ω(1), the above process produces C2εtR
2ζ

disjoint inversions, and thus ed(y, z) ≥ C2εtR
2ζ . This completes the proof of Claim 7.5.10.

We thus �nalized the proof of Lemma 7.5.8.

133



7.6 A Poincaré Inequality for Ulam and Edit Distances
Our communication complexity lower bounds (namely Theorem 7.0.6) imply that embedding
the edit and Ulam metrics into `1, and into powers thereof, requires distortion Ω( log d

log log d).
But our proof also yields a Poincaré-type inequality, as follows. Indeed, using (i) a variant of
Lemma 7.4.4, where Pr[HA(x) 6= HB(x)] is replaced with E[HA(x)−HB(x)]2 and HA,HB
are real (rather than boolean) functions with Ex

[HA(x)
]2 = Ex

[HB(x)
]2 = 1, together

with (ii) Lemma 7.5.2 for suitable parameters R = d1/4 and α = Θ( log d
log log d), we get that for

all f : Zdp → R (and thus all f : Zdp → `2)

E(x,y)∈µ0
[f(x)− f(y)]2 − E(x,y)∈µ1

[f(x)− f(y)]2 ≤ 1
10Ex,y∈Zd

p
[f(x)− f(y)]2. (7.19)

In fact, the aforementioned non-embeddability into `1 (actually into the bigger space
squared-`2) can be proved directly from the Poincaré inequality (7.19), as follows. Consider
a D-distortion embedding into squared-`2, namely, let φ : Zdp → `2 be such that for all
permutations x, y ∈ Zdp,

ed(x, y)/D ≤ ‖φ(x)− φ(y)‖22 ≤ ed(x, y)

Schoenberg [Sch38] proved (see e.g., [DL97, Theorem 9.1.1]) that for every λ > 0, applying
the transform x 7→ 1 − e−λx on the distances of a squared-`2 metric always results with a
squared-`2 metric. Thus, there exists a mapping ψ : Zdp → `2 satisfying

‖ψ(x)− ψ(y)‖22 = 1− e−‖φ(x)−φ(y)‖22·α/R.

We thus get, using Lemma 7.5.8, that

Eµ0‖ψ(x)− ψ(y)‖22−Eµ1‖ψ(x)− ψ(y)‖22− 1
10 ·Ex,y∈Zd

p
‖ψ(x)− ψ(y)‖22 ≥ 1

e− 1
eα/D− 1

10−d−Ω(1).

Combining this inequality with Eqn. (7.19) implies that D ≥ Ω(α) = Ω( log d
log log d).

7.7 Bibliographic Notes
We mention two previous lower bounds on edit distance, which come close to showing a
computational lower bound for the edit distance.

First, if the operations on the symbols of the strings are restricted to tests of equality,
then computing edit distance between two strings over a large alphabet requires Ω(d2)
comparisons [WC76]. However, this lower bound holds only for exact computation (or
1+o(1) approximation) and for strings over a large alphabet (but not for binary strings). In
fact, the lower bound breaks down even in the comparison model (when we can compare the
relative order of two symbols): e.g., the algorithm of [BFC08] runs in time O(d2 (log log d)2

log2 d
)

for computing edit distance between strings over arbitrarily large alphabet.
Second, if we restrict attention to sublinear-time, i.e., algorithms that probe only a small

part of the two input strings, then there exists a simple separation in terms of query com-
plexity. Speci�cally, deciding whether the edit distance is Ω(d) or O(d1−ε) requires reading
at least Ω(d1/2−ε/2) positions of the strings [BEK+03]. In comparison, the same decision
under Hamming distance is achieved easily by sampling O(1) positions. This separation has
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limited computational implications since it essentially shows that estimating edit distance
requires reading many positions of the input strings, and is tied to a particular representation
of the inputs.
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Chapter 8

Lower Bound for NN under Hamming
and Euclidean Distances

In this chapter, we show our lower bound for any data structure solving NN under Hamming
and Euclidean distances. In particular, we show that any (randomized) data structure for
the (1 + ε)-approximate near neighbor problem under Hamming or Euclidean distances,
which uses a constant number of probes to answer each query, must use nΩ(1/ε2) space.
This is the �rst lower bound for this problem in the same model with the upper bound; all
previous lower bounds were for models more restrictive than the one in which there exist
non-trivial upper bounds. Note that, in the regime of constant number of probes, our space
lower bound matches that of the NN algorithms from [KOR00, IM98].

We consider a decision version1 of the approximate near neighbor problem under the
Hamming distance. Given a dataset D ⊂ {0, 1}d of n points and a distance threshold R,
build a data structure which, given q ∈ {0, 1}d, does the following with probability at least
2/3:

• If there is p ∈ D such that H(q, p) ≤ R, answer YES.

• If there is no p ∈ D such that H(q, p) ≤ (1 + ε)R, answer NO.

The lower bound holds for the Euclidean space as well.
As with all known lower bounds for data structures with large space, we consider the

asymmetric communication complexity of the problem. That is, we consider the setting
where two parties, Alice and Bob, are communicating in order to answer a query q. We
assume that Alice holds q, while Bob holds D. We show that in order to solve the problem,
either Alice sends Ω( 1

ε2
lgn) bits, or Bob sends Ω(n1−δ) bits, for any constant δ > 0. By the

standard relation to the cell-probe complexity [MNSW98], this implies that the lower bound
on space of 2Ω(ε−2 logn). Our result is obtained by showing a close relationship between the
complexity of the (1 + ε)-NN problem and the complexity of the set disjointness problem.2
Lower bounds for the latter problem appeared in [MNSW98] for the case of randomized
protocols with one-sided error. We give an analogous (a bit weaker) lower bound for the

1The de�nition of the approximate near neighbor problem employed here is somewhat weaker than the
one from the Introduction. Speci�cally, it does not require the algorithm to provide a �near� point in the
YES case. However, this de�nition is more suitable for the reductions used in this paper. Clearly, the lower
bound for this version holds for stronger versions as well.

2In the asymmetric context, the set disjointness problem is also called LSD, for Lopsided Set Disjointness.
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two-sided error case, solving an open problem posed in that paper. We note the optimal
lower bound for the set disjointness problem was recently shown in [P�at08].

There has been a considerable number of results on lower bounds for the near and nearest
neighbor problems (e.g. see [BOR99, CCGL99, BR02, CR04, PT06] or [Ind03b] for a survey).
Most apply to more restrictive (i.e, harder) versions of the problem, where either random-
ization or approximation are disallowed. For randomized approximation algorithms for the
nearest neighbor problem, a tight query time bound of Θ(lg lg d/ lg lg lg d) is known [CR04],
for any constant ε and polynomial space.

In contrast to that work, our result holds for the approximate near neighbor problem, and
establishes a quantitative dependence between the approximation factor and the exponent
in the space bound (for the constant query time case). Given that the exponent must be
quadratic in 1/ε, our results indicate a fundamental di�culty in designing practical data
structures which are very accurate and very fast. We note that, very recently, [PTW08]
showed another lower bound for the approximate near neighbor problem, for approximations
c > 2. Their lower bound says that any data structure, with t cell-probes, has to use
n1+Ω(1/c2/t) space. We point out that their lower bound is not proven for the decision
version of the NN problem considered in this chapter, but rather for the �full� near neighbor
problem, where one has to report an actual near neighbor.

Our space lower bound also holds for a closely related (1 + ε)-far neighbor problem
(de�ned formally in section 8.1.3).

Finally, we mention that our lower bound provides some insight into the broader context
of dimensionality reduction as used in high-dimensional computational geometry (see also
Section 2.3). Speci�cally, the NN algorithms of [KOR00, IM98] may be seen as an appli-
cation of the dimensionality reduction method as follows. The idea would be to reduce the
dimension of the ambient space to k = O(logn/ε2), and then store �all� points in Rk within
distance 1 from each dataset point p ∈ D. To do this, we impose a cubic grid on Rk, with
each cell having diameter ε. By arguments as in [IM98] it follows that each unit ball in Rk
touches at most (1/ε)O(k) grid cells. Therefore, we can a�ord to store all such cells within the
given space bound. To answer a query, we simply check if the grid cell containing the query
point has been stored. Our lower bound suggests that the use of dimensionality-reduction
method is essentially tight in the context of the NN problem.

The results from this chapter have previously appeared in [AIP06].

8.1 Lower bounds for the approximate near neighbor
We prove the following data structure lower bound.

Theorem 8.1.1. Fix n ∈ N and ε ∈ (0, 1) such that ε > n−β for β < 1/2. There exists
dimension d = O

(
log2

ε5

)
such that the following data structure lower bound holds in the cell-

probe model. Suppose the cell size is at most (d log n)O(1). Then, any data structure for the
decision (1 + ε)-NN problem, with cell-probe complexity of t ∈ N, must use space nΩ(1/ε2/t).

The result holds for NN under both the Hamming distances in {0, 1}d and the Euclidean
distance in Rd.

For proving the lower bound, we analyze the asymmetric communication complexity
of (1 + ε)-NN via a reduction from the set disjointness problem. In the set disjointness
problem, Alice receives a set S from a universe [U ] = {1 . . . U}, |S| = m, and Bob receives
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a set T ⊂ [U ] of size n. They need to decide whether T ∩ S = ∅. We use the following
asymmetric communication complexity lower bound for the latter problem.

Theorem 8.1.2 ([P�at08]). Assume Alice receives a set S, |S| = m and Bob receives a set
T, |T | = n, both sets coming from a universe of size 2mn, for m < nγ, where γ < 1 is a
constant. In any randomized, two-sided error communication protocol deciding disjointness
of S and T , either Alice sends Ω(m lgn) bits or Bob sends Ω(n1−δ) bits, for any δ > 0.

For completeness, in Section 8.1.2, we present the proof of a slightly weaker version of
this theorem, which implies a space exponent of 1/ε2

log(1/ε) instead of 1/ε2.
In Section 8.1.1 we show a reduction from the the set disjointness problem to the NN

problem. Thus, using the above theorem for m = 1
9ε2

, we derive the following theorem
on asymmetric communication complexity of the (1 + ε)-NN problem under the Hamming
distance:

Theorem 8.1.3. Consider the communication complexity version of (1 + ε)-NN in {0, 1}d,
d = O( log2 n

ε5
), where Alice receives the query q ∈ {0, 1}d and Bob receives the set D ⊂ {0, 1}d.

Then, for any ε = Ω(n−γ), γ < 1/2, in any randomized protocol deciding the (1 + ε)-NN
problem, either Alice sends Ω( logn

ε2
) bits or Bob sends Ω(n1−δ) bits, for any δ > 0.

The lower bound on NN under the Euclidean distance follows immediately from the fact
that NN under the Hamming distance, for threshold R > 0 and approximation 1+ ε reduces
immediately to NN under the Euclidean distance, for threshold

√
R and approximation√

1 + ε.
The main theorem, Theorem 8.1.1, then follows from Theorem 8.1.3. Speci�cally, we

apply Lemma 1 from [MNSW98], which states:

Lemma 8.1.4 ([MNSW98], Lemma 1). If there is a solution to the data structure problem
with space s, query time t, and cell size b, then there exists a protocol where Alice sends
2tdlog se bits and Bob sends 2tb bits.

For t = O(1), and cell size b < O(n1−δ), for some δ > 0, Bob sends an insu�cient number
of bits. Thus, Alice needs to send 2tdlog se > Ω(m log n) bits. Solving for s, we obtain that
space is s = nΩ(1/ε2). Note that the cell size b is usually much smaller than n1−δ, typically
b = d logO(1) n.

8.1.1 Reduction from asymmetric set disjointness to (1 + ε)-NN
We prove that we can reduce asymmetric set disjointness problem to the approximate near
neighbor. A randomized [a, b]-protocol for a communication problem is a protocol in which
Alice sends a bits and Bob sends b bits, and the error probability of the protocol is bounded
away from 1/2.

Lemma 8.1.5. Suppose there exists a randomized [a, b]-protocol for the (1 + ε)-NN problem
with d = O

(
log2 n
ε5

)
, where Alice receives the query q ∈ {0, 1}d and Bob receives the dataset

D ⊂ {0, 1}d of size n. Then there exists a randomized [a, b]-protocol for asymmetric set
disjointness in an arbitrary universe [U ], where Alice receives a set S ⊂ [U ] of size m = 1

9ε2
,

and Bob receives a set T ⊂ U of size n.
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Proof. We show how to map an instance of asymmetric set disjointness, given by T and
S, into an instance of (1 + ε)-NN, given by respectively the dataset D ⊂ {0, 1}d and the
query q ∈ {0, 1}d. For this purpose, �rst, Alice and Bob map their sets S and T into query
q̃ ∈ RU and dataset D̃ ⊂ RU , i.e., an (1 + ε)-NN instance in Euclidean U -dimensional
space, `U2 . Then, Alice and Bob map their points from the `U2 metric to Hamming cube
{0, 1}O(ε−5 log2 n), essentially preserving the distances among all the points q̃ and D̃. This
method for reducing a communication complexity problem into an approximate problem
involving Hamming distance appeared earlier in [IW03], albeit in the context of di�erent
problems.

For the set T ⊂ [U ], we de�ne D̃ , {eu | u ∈ T}, where eu is a standard Rd basis
vector, with 1 in the uth coordinate, and 0 everywhere else. For the set S, we set the query
q̃ , 3ε ·∑u∈S eu; note that ‖q̃‖22 = m · (3ε)2 = 1.

We show that if S ∩ T = ∅, then ‖q̃ − p̃‖2 =
√

2 for all p̃ ∈ D̃, and, if S ∩ T 6= ∅, then
there exists a point p̃ ∈ D̃ such that ‖q̃ − p̃‖2 ≤ (1− 4ε

3 )
√

2. Indeed, we have that

• if S ∩ T = ∅, then for any p̃ ∈ D̃, we have that ‖q̃ − p̃‖22 = ‖q̃‖22 + ‖p̃‖22 − 2q̃ · p̃ = 2;

• if S ∩ T 6= ∅, then for u∗ ∈ S ∩ T and for p̃ = eu∗ ∈ D̃, we have ‖q̃ − p̃‖22 =
‖q̃‖22 + ‖p̃‖22 − 2q̃ · p̃ = 2− 2(3εeu∗) · eu∗ = 2(1− 3ε).

To construct D ⊂ {0, 1}d and q ∈ {0, 1}d, Alice and Bob perform a randomized mapping
of `U2 into {0, 1}d for d = O(ε−5 log2 n), such that the distances are only insigni�cantly
distorted, with high probability. Alice and Bob use a source of public random coins to
construct the same randomized mapping. First, they construct a randomized embedding f1

mapping `U2 into `O(ε−2 logn)
1 with distortion less than (1 + ε/16) (see, e.g., [Ind01a]). Then,

they construct the standard embedding f2 mapping `O(ε−2 logn)
1 into {0, 1}O(ε−5 log2 n). The

embedding f2 �rst scales up all coordinates by Z = O( logn
ε3

), then rounds the coordinates,
and �nally transforms each coordinate into its unary representation. We set the constants
such that the resulting approximation of f2 is an additive term O( logn

ε2
) < Zε

√
2

16 .
Next, Alice and Bob construct q = f2(f1(q̃)) ∈ {0, 1}d and D = {f2(f1(p̃)) | p̃ ∈ D̃} ⊂

{0, 1}d. Notice that for any p = f2(f1(p̃)) ∈ D, if ‖q̃ − p̃‖2 ≥
√

2, then ‖q − p‖H ≥
Z
√

2(1 − ε/16) − Zε
√

2
16 = Z

√
2(1 − ε

8), and if ‖q̃ − p̃‖2 ≤
√

2(1 − 4ε
3 ), then ‖q − p‖H ≤

Z
√

2(1− 4ε
3 )(1 + ε/16) + Zε

√
2

16 ≤ Z√2(1− ε− 5ε
24).

Finally, Alice and Bob can run the (1+ε)-NN communication protocol with R = Z
√

2(1−
ε − 5ε

24) to decide whether S ∩ T = ∅. Note that the error probability of the resulting set
disjointness protocol is bounded away from 1/2 since (1+ε)-NN communication protocol has
error probability bounded away from 1/2, and the embedding f2 ◦ f1 fails with probability
at most n−Ω(1).

8.1.2 A lower bound for asymmetric set disjointness
In this section, we prove a slightly weaker version of Theorem 8.1.2:

Theorem 8.1.6. Assume Alice receives a set S, |S| = m and Bob receives a set T, |T | = n,
both sets coming from a universe of size 2mn, for m < nγ, where γ < 1/3 is a constant. In
any randomized, two-sided error communication protocol deciding disjointness of S and T ,
either Alice sends Ω( m

logm lgn) bits or Bob sends Ω(n1−δ/m2) bits, for any δ > 0.
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First we de�ne the hard instance. The elements of our sets come from the universe
[2m] × [n]. Alice receives S = {(i, si) | i ∈ [m]}, for s1, . . . , sm chosen independently at
random from [n]. Bob receives T = {(tj , j) | j ∈ [n], for t1, . . . , tn chosen independently
from [2m]. The output should be 1 i� the sets are disjoint. Note that the number of choices
is nm for S and (2m)n for T , and that S and T are chosen independently.

The lower bound follows from the following variant of the richness lemma, based on
[MNSW98, Lemma 6]. The only change is that we make the dependence on ε explicit,
because we will use ε = o(1).

Lemma 8.1.7. Consider a problem f : X × Y → {0, 1}, and some probability distributions
ηX , ηY over sets X,Y respectively. Suppose Prx∈X,y∈Y [f(x, y) = 0] ≥ Ω(1).

If f has a randomized two-sided error [a, b]-protocol, then there is a rectangle X × Y of
f of sizes at least ηX(X ) ≥ 2−O(a log 1/ε) and ηY (Y) ≥ 2−O((a+b) log 1/ε) in which the density
(i.e., conditional measure) of ones is at most ε. Also, the protocol outputs value 0 on X ×Y.

To apply the lemma, we �rst show the disjointness function is 1 with constant probability.

Lemma 8.1.8. As S and T are chosen randomly as described above, Pr[S ∩T = ∅] = Ω(1).

Proof. Note that S∩T ⊂ [n]× [m]. We have Pr[(i, j) ∈ S∩T ] = 1
n(2m) when i ∈ [n], j ∈ [m].

Then by linearity of expectation E[ [|]S ∩ T |] = 1
2 . Since |S ∩ T | ∈ {0, 1, 2, . . . }, we must

have Pr[|S ∩ T | = 0] ≥ 1
2 .

Thus, it remains to show that no big enough rectangle has a small density of zeros.
Speci�cally, we show the following:

Lemma 8.1.9. Let δ > 0 be arbitrary. If we choose S ∈ S, T ∈ T uniformly and indepen-
dently at random, where |S| > 2n(1−δ)m and T ≥ (2m)n · 2/en1−δ/(8m2), then the probability
S ∩ T 6= ∅ is at least 1

16m2 .

We use the richness lemma with ε = 1
32m2 . If there exists an [a, b] protocol for our

problem, we can �nd a rectangle of size
(
nm/2O(a lgm)

) × (
(2m)n/2O((a+b) lgm)

)
, in which

the fraction of zeros is at most ε. To avoid contradicting Lemma 8.1.9, we must either have
2O(a lgm) > nδm/2, or 2O((a+b) lgm) > en

1−δ/(8m2)/2. This means either a = Ω( m
lgm lg n) or

a+ b = Ω(n1−δ/(m2 lgm)). If m < nγ , for constant γ < 1
3 , this implies that a = Ω( m

lgm lgn)
or b = Ω(n1−δ/m2), for any δ > 0.

Proof. (of Lemma 8.1.9) Choosing S at random from S induces a marginal distribution on
[n]. Now consider the heaviest n1−δ elements in this distribution. If the total probability
mass of these elements is at most 1− 1

2m , we call i a well-spread coordinate.

Lemma 8.1.10. If |S| > 2n(1−δ)m, there exists a well-spread coordinate.

Proof. Assume for contradiction that no coordinate is well-spread. Consider the set S ′
formed by S ∈ S such that no si is outside the heaviest n1−δ elements in Si. By a union
bound, the probability over S ∈ S that some si is not among the heavy elements is at most
m 1

2m = 1
2 . Then, |S ′| ≥ |S|/2. On the other hand |S ′| ≤ (n1−δ)m, since for each coordinate

we have at most n1−δ choices. This contradicts the lower bound on |S|.
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Let i be a well-spread coordinate. We now lower bound the probability of S ∩ T 6= ∅ by
the probability of S ∩ T containing an element on coordinate i. Furthermore, we ignore the
n1−δ heaviest elements of Si. Let the remaining elements be W , and p(j) = Pr[si = j] when
j ∈W . Note that p(j) ≤ 1/n1−δ, and

∑
j∈W p(j) ≥ 1

2m .
De�ne σ(T ) =

∑
j∈W :tj=i

p(j). For some choice of T , σ(T ) gives exactly the probability
of an interesting intersection, over the choice of S ∈ S. Thus, we want to lower bound
ET [σ(T ) | T ∈ T ].

Assume for now that T is uniformly distributed in the original space (not in the subspace
T ). Note that σ(T ) =

∑
j∈W Xj , where Xj is a variable equal to p(j) when tj = i and 0

otherwise. By linearity of expectation, ET [σ(T )] =
∑

j∈W
p(j)
2m ≥ 1/(2m)2. Since Xj 's are

independent (tj 's are independent when T is not restricted), we can use a Cherno� bound
to deduce σ(T ) is close to this expectation with very high probability over the choice of T .
Indeed, Pr[σ(T ) < 1

2 · 1
(2m)2

] < e−n1−δ/(8m2).
Now we can restrict ourselves to T ∈ T . The probability σ(T ) < 1

8m2 is so small,
that it remains small even in this restricted subspace. Speci�cally, this probability is at
most Pr[σ(T ) < 1

8m2 ]/Pr[T ∈ T ] ≤ exp
[−n1−δ/(8m2)

]
/(2 exp

[−n1−δ/(8m2)
]
) = 1

2 . Since
σ(T ) ≥ 0, (∀)T , we conclude that ET [σ(T ) | T ∈ T ] ≥ 1

2 · 1
8m2 = 1

16m2 .

8.1.3 Approximate far neighbor problem
The above lower bound for the (1+ ε)-NN problem can also be transferred to the (1+ ε)-far
neighbor problem, yielding exactly the same space lower bound. Formally, we de�ne the
(1 + ε)-far neighbor as follows. Given a set D ⊂ {0, 1}d of n points and a distance R, build
a data structure which given q ∈ {0, 1}d does the following, with probability at least, say,
2/3:

• If there is p ∈ D such that ‖q − p‖ ≥ R, answer YES.
• If there is no p ∈ D such that ‖q − p‖ ≥ R/(1 + ε), answer NO.

The lower bound results from the following lemma, an equivalent of Lemma 8.1.5.

Lemma 8.1.11. Suppose there exists a randomized [a, b]-protocol for the (1+ε)-far neighbor
problem with d = O

(
log2 n
ε5

)
, where Alice receives the query q ∈ {0, 1}d and Bob receives the

dataset D ⊂ {0, 1}d of size n. Then there exists a randomized [a, b]-protocol for asymmetric
set disjointness in an arbitrary universe [U ], where Alice receives a set S ⊂ [U ] of size
m = 1

9ε2
, and Bob receives a set T ⊂ U of size n.

As before, together with theorem 8.1.2, this lemma implies that any data structure for
(1 + ε)-far neighbor problem achieving constant number of cell probes, has space nΩ(1/ε2).

Proof of Lemma 8.1.11. Same as the proof of lemma 8.1.5, except set the query q̃ = −3ε
∑

u∈S eu.
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Chapter 9

Lower Bound for NN under `∞

In this chapter, we present our lower bound for the NN under the `∞ distance. We show
that, for any ρ > 1, any deterministic decision tree for the O(logρ log d)-NN under the d-
dimensional `∞ distance, of strongly sub-linear depth, must have nΩ(ρ) size. In particular,
one obtains an (unusual) double-logarithmic approximation for polynomial space. This
space-approximation trade-o� matches that of the algorithm given in [Ind98]. The latter
paper constructs an NN algorithm for d-dimensional `∞ with approximation 4dlogρ log 4de+
1, which requires space dnρ logO(1) n and O(d·logn) query time, for any ρ > 1. Furthermore,
the data structure from [Ind98] is a deterministic decision tree, of depth O(d logn). For 3-
approximation, [Ind98] also gives a nlog d+1 space algorithm, with a similar query time.

Our lower bound thus gives evidence for the apparent oddity of the `∞ norm. Speci�cally,
while `∞ is one of the classical `p norms, it seems to present a very di�erent behavior from,
say, Hamming (`1) and Euclidean (`2) norms. The NN algorithms under Hamming (`1)
and Euclidean (`2) distances achieve much better approximations (constant), but the data
structures are randomized (in fact, in the case of these two spaces, randomization seems
to be required). Furthermore, essentially the only previous worst-case result on `∞ is the
aforementioned algorithm of [Ind98], leaving `∞ norm quite poorly understood.

These considerations have lead to the optimism that one can achieve NN under `∞ with
a constant factor approximation in polynomial space [Ind01b]. Our lower bound shows
one cannot achieve this goal with (deterministic) decision trees, and thus make the goal
somewhat elusive.

There are multiple motivations for studying the `∞ distance, both intrinsic and extrin-
sic. First, by itself, `∞ may be a natural choice as a similarity metric for some applications,
especially when coordinates are rather heterogeneous. If the features represented by coor-
dinates are hard to relate, it is hard to add up their di�erences numerically, in the sense of
the `1 or `2 norm (the �comparing apples to oranges� phenomenon). One popular proposal
is to convert each coordinate to rank space, and use the maximum rank di�erence as an
indication of similarity. See for example [Fag96, Fag98].

Besides being a natural distance, `∞ is a promising host for embedding other metrics
into it. For example, a classical result of Matou²ek states that any metric on n points can be
embedded into `∞ with dimension d = O(cn1/c logn) and distortion 2c− 1 [Mat96]. While
the dimension of nΘ(1) is too high for most applications (say, for the edit distance on {0, 1}d,
we have n = 2d), this embedding illustrates some of the power of `∞.

Early embeddings into `∞ with interesting dimension included various results for Haus-
dor� metrics [FCI99], embedding tree metrics into dimension O(log n) [LLR94], and planar
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graphs metrics into dimension O(log n) [KLMN04] (improving over [Rao99]).
Even more relevant to our discussion is the fact that, as shown in Chapter 5, `∞ (of low

dimension) plays a fundamental role in the design of our new NN algorithms for the Ulam
and EMD distances, as well as, more generally, for the product spaces and the `p spaces for
p > 2. In fact, our algorithms for all these spaces rely crucially on the algorithm from [Ind98]
and the algorithm for NN under max-product from [Ind02b] (which extends [Ind98]). The
(nearly) double-logarithmic bounds that we obtain in Chapter 5 come precisely from the
double-logarithmic approximation of the algorithms from [Ind98, Ind02b].

Thus, the bottleneck in the best�known algorithms for the Ulam, and `p for p > 2
distances is the `∞ distance. Our lower bound is a very timely indication that, if further
improvement for these metrics is possible, it has to avoid `∞ and max-product spaces. (We
note that NN under max-product is a generalization of NN under `∞, and thus lower bounds
on NN under `∞ carry over immediately to NN under max-products.)

Previously, the only lower bound for NN under `∞ was a simple reduction of [Ind98]
that shows `∞ with approximation better than 3 is as hard as the partial match problem;
see [JKKR04, P�at08] for partial match lower bounds.

Statement of the result. As in the previous chapter, we approach the problem via
asymmetric communication complexity. We consider a setting where Alice holds the query
point and Bob holds the set D on n database points. For convenience, we assume that the
space is discretized. As in Chapter 8, we study the decision version of the approximate
near neighbor problem. Speci�cally, the communication complexity problem is de�ned as
follows. Alice is given a �query point� q ∈ {−m, . . .m}d, and Bob is given the �dataset�
D ⊂ {−m, . . .m}d of size n. Then the c-NN problem is a promise problem in which the two
players must:

• output 1 if there exists some p ∈ D such that ‖q − p‖∞ ≤ 1;

• output 0 if, for all p ∈ D, we have that ‖q − p‖∞ > c.

We show the following lower bound on the communication complexity of this problem,
which is asymptotically optimal by the algorithm from [Ind98].

Theorem 9.0.12. Fix δ, ε > 0. Consider a dimension d satisfying Ω(log1+ε n) ≤ d ≤
o(n), and an approximation ratio c satisfying 3 < c ≤ O(log log d). Further de�ne ρ =
1
2( ε4 log d)1/c > 10.

In a deterministic protocol solving c-NN, either Alice sends a = Ω(δρ logn) bits, or Bob
sends b = Ω(n1−δ).

Data structures. Asymmetric communication lower bounds imply cell-probe lower bounds
for data structures by constructing the natural communication protocol in which Alice sends
a cell address in each round, and Bob replies with the cell contents. Thus by a standard
analysis of [MNSW98], our communication lower bound implies:

Corollary 9.0.13. Consider any cell-probe data structure solving d-dimensional near-neighbor
search under `∞ with approximation c = O(logρ log d). If the word size is w = n1−δ for some
δ > 0, the data structure requires space nΩ(ρ/t) for cell-probe complexity t.

As with all large-space lower bounds known to date, this bound is primarily interesting
for constant query time, and degrades exponentially with t. We expect this dependence on
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t to be far from optimal, but proving a tight lower bound for superconstant t is well beyond
the reach of current techniques.

By another standard reduction to the decision tree model (see [KN97] and Section 9.5),
we have the following:

Corollary 9.0.14. Let δ > 0 be arbitrary. A decision tree of depth n1−2δ and node
size nδ that solves d-dimensional near-neighbor search under `∞ with approximation c =
O(logρ log d), must have size nΩ(ρ).

Unlike cell-probe complexity, where the bound degrades quickly with the query time,
the lower bound for decision trees holds even for extremely high running time (depth) of
n1−δ. A decision tree with depth n and predicate size O(d logM) is trivial: simply test all
database points.

The algorithm from [Ind98] is a decision tree with depth d · logO(1) n and predicate size
O(log(n + M)), which achieves the same interesting trade-o� between approximation and
space. Thus, we show that this trade-o� is optimal, at least in the decision tree model. In
particular, for polynomial space, the approximation factor of Θ(lg lg d) is intrinsic to NN
under `∞.

Technical discussion. Perhaps the most innovative component of our lower bound is
the conceptual step of understanding why this dependence on the approximation �should�
be optimal. In Section 9.1, we recast the idea behind the algorithm from [Ind98] in an
information-theoretic framework that explains the behavior of the algorithm more clearly.

This understanding suggests a heavily biased distribution over the database points, which
elicits the worst behavior. On each coordinate, the probability of some value x decays
doubly-exponentially with x, more precisely as 2−(2ρ)x . All d dimensions are independent
and identically distributed.

By a standard analysis in communication complexity, Alice's communication will �x the
query to be in a set S whose measure in our probability space is bounded from below.
Technically, the crucial step is to determine the probability that some point in the database
lies in the neighborhood of S. The neighborhood N(S) is the Minkowski sum of the set
with the `∞ ball [−1, 1]d. In other words, N(S) is the set of points that could be a nearest
neighbor. To �nd an instance for which the algorithm makes a mistake, we must prove a
lower bound on the measure of the neighborhood N(S), showing that a point will fall in the
neighborhood with good probability.

The crux of the lower bound is not in the analysis of the communication protocol (which is
standard), but in proving a lower bound for N(S), i.e. in proving an isoperimetric inequality.
Of course, the initial conceptual step of de�ning an appropriate biased distribution was the
key to obtaining the isopermetric inequality that we need. The proof is rather non-standard
for an isoperimetric inequality, because we are dealing with a very particular measure on a
very particular space. Fortunately, a few mathematical tricks save the proof from being too
technical.

The communication complexity steps are described in Section 9.2. The isoperimetric
inequality is shown in Section 9.3.

Randomized lower bounds. As explained above, our lower bound uses distributions on
the input rather pervasively, but still, it only works for deterministic protocols. (Fortunately,
the upper bound is also deterministic. . . )
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It would be a nice technical development to also show this lower bound for a bounded-
error protocol. Unfortunately, this seems beyond the scope of existing techniques. The
trouble is that all analyzes of asymmetric communication games have been unable to employ
non-product distributions.

In Section 9.4, we show the following interesting factlet: it is not possible to prove
asymmetric communication lower bounds over product distributions, for the NN problem
with approximation c > 3. Thus, a randomized lower bound would need to develop new
tools in communication complexity.

The results from this chapter have previously appeared in [ACP08].

9.1 Review of the Upper Bound
Decision trees. Due to the decomposability of `∞ as a maximum over coordinates, a
natural idea is to solve NN by a decision tree in which every node is a coordinate comparison.
A node v is reached for some set Qv ⊆ {−m, . . . ,+m}d of queries. If the node compares
coordinate i ∈ [d] with a �separator� x, its two children will be reached for queries in
Q` = Qv ∩ {q | qi < x}, respectively in Qr = Qv ∩ {q | qi > x} (assume x is non-integral to
avoid ties).

De�ne [x, y]i =
{
p | pi ∈ [x, y]

}
. Then, Q` = Qv ∩ [−∞, x]i and Qr = Qv ∩ [x,∞]i.

If the query is known to lie in someQv, the set of database points that could still be a near
neighbor is Nv = D ∩ (

Qv + [−1, 1]d
)
, i.e. the points inside the Minkowski sum of the query

set with the `∞ �ball� of radius one. For our example node comparing coordinate i ∈ [d]
with x, the children nodes have N` = Nv∩ [−∞, x+1]i, respectively Nr = Nv∩ [x−1,+∞]i.

Observe that N`∩Nr = Nv∩[x−1, x+1]i. In some sense, the database points in this slab
are being �replicated,� since both the left and right subtrees must consider them as potential
near neighbors. This recursive replication of database points is the cause of superlinear
space. The contribution of [Ind98] is an intriguing scheme for choosing a separator that
guarantees a good bound on this recursive growth.

Information progress. Our �rst goal is to get a handle on the growth of the decision
tree, as database points are replicated recursively. Imagine, for now, that queries come from
some distribution µ. The reader who enjoys worst-case algorithms need not worry: µ is just
an analysis gimmick, and the algorithm will be deterministic.

We can easily bound the tree size in terms of the measure of the smallestQv ever reached:
there can be at most 1/minv Prµ[Qv] distinct leaves in the decision tree, since di�erent
leaves are reached for disjoint Qv's. Let IQ(v) = log2

1
Prµ[Qv ] ; this can be understood as

the information learned about the query, when computation reaches node v. We can now
rewrite the space bound as O

(
2maxv IQ(v)

)
.

Another quantity that can track the behavior of the decision tree is HN (v) = log2 |Nv|.
Essentially, this is the �entropy� of the identity of the near neighbor, assuming that one
exists.

At the root λ, we have IQ(λ) = 0 and HN (λ) = lg n. Decision nodes must reduce the
entropy of the near neighbor until HN reaches zero (|Nv| = 1). Then, the algorithm can
simply read the single remaining candidate, and test whether it is a near neighbor of the
query. Unfortunately, decision nodes also increase IQ along the way, increasing the space
bound. The key to the algorithm is to balance this tension between reducing the entropy of
the answer, HD, and not increasing the information about the query, IQ, too much.
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In this information-theoretic view, algorithm of [Ind98] shows that we can (essentially)
always �nd a separator that decreases HN by some δ but does not increase IQ by more than
ρ · δ. Thus, HD can be pushed from lgn down to 0, without ever increasing IQ by more
than ρ lgn. That is, space O(nρ) is achieved.

Searching for separators. At the root λ, we let i ∈ [d] be an arbitrary coordinate,
and search for a good separator x on that coordinate. Let π be the frequency distribution
(the empirical probability distribution) of the projection on coordinate i of all points in the
database. To simplify expressions, let π(x : y) =

∑y
j=x π(j).

If x is chosen as a separator at the root, the entropy of the near neighbor in the two
child nodes is reduced by:

HN (λ)−HN (`) = log2
|Nλ|
|N`|

= log2
|D|

|D∩[−∞,x+1]i| = log2
1

π(−∞:x+1)

HN (λ)−HN (r) = log2
1

π(x−1:∞)

Remember that we have not yet de�ned µ, the assumed probability distribution on
the query. From the point of view of the root, it only matters what probability µ assigns
to Q` and Qr. Let us reason, heuristically, about what assignments are needed for these
probabilities in order to generate di�cult problem instances. If we understand the most
di�cult instance, we can use that setting of probabilities to obtain an upper bound for all
instances.

First, it seems that in a hard instance, the query needs to be close to some database
point (at least with decent probability). In our search for a worst case, let's just assume that
the query is always planted in the neighborhood of a database point; the problem remains
to �nd this near neighbor.

Assume by symmetry that HN (`) ≥ HN (r), i.e. the right side is smaller. Under our
heuristic assumption that the query is planted next to a random database point, we can
lower bound Prµ[Qr] ≥ π(x+ 1,∞). Indeed, whenever the query is planted next to a point
in [x+1,∞]i, it cannot escape from Qr = [x,∞]i. Remember that our space guarantee blows
up when the information about Qv increases quickly (i.e. the probability of Qv decreases).
Thus, the worst case seems to be when Prµ[Qr] is as low as possible, namely equal to the
lower bound.

Thus, we have convinced ourselves that it's reasonable to de�ne µ such that:

Pr
µ

[Q`] = π(−∞ : x+ 1); Pr
µ

[Qr] = π(x+ 1,∞) (9.1)

We apply the similar condition at all nodes of the decision tree. Note that there exists a
µ satisfying all these conditions: the space of queries is partitioned recursively between the
left and right subtrees, so de�ning the probability of the left and right subspace at all nodes
is a de�nition of µ (but note that µ with these properties need not be unique).

From (9.1), we can compute the information revealed about the query:

IQ(`)− IQ(λ) = log2
Pr[Qλ]
Pr[Q`]

= log2
1

π(−∞:x+1)

IQ(r)− IQ(λ) = log2
1

π(x+1:∞)

Remember that our rule for a good separator was ∆IQ ≤ ρ · ∆HN . On the left side,
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IQ(`) − IQ(λ) = HN (λ) − HN (`), so the rule is trivially satis�ed. On the right, the rule
asks that: log2

1
π(x+1:∞) ≤ ρ · log2

1
π(x−1:∞) . Thus, x is a good separator i� π(x+ 1 : ∞) ≥[

π(x− 1 :∞)
]ρ.

Finale. As de�ned above, a good separator satis�es the bound on the information progress,
and guarantees the desired space bound of O(nρ). We now ask what happens when no good
separator exists.

We may assume by translation that the median of π is 0, so π([1 :∞]) ≤ 1
2 . If x = 11

2 is
not a good separator, it means that π(3 :∞) <

[
π(1 :∞)

]ρ ≤ 2−ρ. If x = 31
2 is not a good

separator, then π(5 :∞) <
[
π(3 :∞)

]ρ ≤ 2−ρ2 . By induction, the lack of a good separator
implies that π(2j + 1 : ∞) < 2−ρj . The reasoning works symmetrically to negative values,
so π(−∞ : −2j − 1) < 2−ρj .

Thus, if no good separator exists on coordinate i, the distribution of the values on that
coordinate is very concentrated around the median. In particular, only a fraction of 1

2d of
the database points can have |xi| ≥ R = 1 + 2 logρ log2

n
4d . Since there is no good separator

on any coordinate, it follows that less than d · n2d = n
2 points have some coordinate exceeding

R. Let D? be the set of such database points.
To handle the case when no good separator exists, we can introduce a di�erent type of

node in the decision tree. This node tests whether the query lies in an `∞ ball of radius
R+ 1 (which is equivalent to d coordinate comparisons). If it does, the decision tree simply
outputs any point in D \D?. Such a point must be within distance 2R+ 1 of the query, so
it is an O(logρ log d) approximation.

If the query is outside the ball of radius R+1, a near neighbor must be outside the ball of
radius R, i.e. must be in D?. We continue with the recursive construction of a decision tree
for point set D?. Since |D?| ≤ |D|/2, we get a one-bit reduction in the entropy of the answer
for free. (Formally, our µ just assigns probability one to the query being outside the ball of
radius R+ 1, because in the �inside� case the query algorithm terminates immediately.)

Intuition for a lower bound. After obtaining this information-theoretic understanding
of the algorithm from [Ind98], the path to a lower bound should be intuitive. We will
consider a distribution on coordinates decaying like 2−ρj (we are free to consider only the
right half, making all coordinates positive). Database points will be generated i.i.d., with
each coordinate drawn independently from this distribution.

In the communication view, Alice's message sends a certain amount of information re-
stricting the query space to some Q. The entropy of the answer is given by the measure of
Q+ [−1, 1]d (each of the n points lands in Q+ [−1, 1]d independently with the same prob-
ability). The question that must be answered is how much bigger Q+ [−1, 1]d is, compared
to Q. We show an isoperimetric inequality proving that the least expanding sets are exactly
the ones generated by the algorithm from [Ind98]: intersections of coordinate cuts {pi ≥ x}.

Then, if Alice's message has o(ρ lgn) bits of information, the entropy of the near neighbor
decreases by o(lgn) bits. In other words, n1−o(1) of the points are still candidate near
neighbors, and we can use this to lower bound the message that Bob must send.

9.2 The Communication Lower Bound
We denote the communication problem c-NN by the partial function F . We complete the
function F by setting F̄ (q,D) = F (q,D) whenever F (q,D) is de�ned (i.e., when we are
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either in a yes or no instance), and F̄ (q,D) = ? otherwise. Note that the domain of F̄ is
X × Y , where X = {0, 1, . . .m}d and Y =

({0, 1, . . .m}d)n.
An [a, b]-protocol is a protocol by which Alice sends a total of a bits and Bob sends a

total of b bits. To prove Theorem 9.0.12, assume that there exists some [a, b]-protocol Π
computing the function F̄ : X × Y → {0, 1, ?}.

As explained already, our lower bound only applies to deterministic (zero error) protocols.
However, at many stages it requires conceptual use of distributions on the input domains
X and Y , which are described below. We then use the richness lemma of [MNSW98] (for
randomized protocols), namely Lemma 8.1.7.

First de�ne the following measure (probability distribution) π over the set {0, 1, . . .m}:
for i = 1, 2, . . . c, let π({i}) = 2−(2ρ)i and π({0}) = 1 −∑

i≥1 π({i}) ≥ 1/2. For sim-
plicity, we denote πi = π({i}). Similarly, de�ne the measure µd over {0, 1, . . .m}d as
µd({(x1, x2 . . . xd)}) = π({x1}) · π({x2}) · · ·π({xd}).

In our hard distribution, we generate q at random from {0, 1, . . .m}d according to the
distribution µd. Also, we take the set D by choosing n points i.i.d. from µd.

Claim 9.2.1. If we choose q and D as above, then Pr[F̄ (q,D) 6= 0] ≤ e− log1+ε/3 n.

Proof. Consider q and some p ∈ D: they di�er in the jth coordinate by at least c with
probability at least 2π0πc ≥ πc (when one is 0 and the other is c). Thus, Pr[‖q−p‖∞ < c] ≤
(1−πc)d ≤ e−πcd ≤ e− log1+ε/2 n. By a union bound over all p ∈ D, we get that ‖q−p‖∞ ≥ c
for all p ∈ D with probability at least 1− e− log1+ε/3 n.

Claim 9.2.2. There exists a combinatorial rectangle Q×D ⊂ {0, 1, . . .m}d×({0, 1, . . .m}d)n
on which the presumed protocol outputs 0, and such that µd(Q) ≥ 2−O(a) and µd·n(D) ≥
2−O(a+b).

The claim follows immediately from the richness lemma 8.1.7, applied to the function
F ′ that is the function the presumed protocol Π actually computes. In particular, note
that since the protocol is deterministic, F ′(q,D) = F̄ (q,D) whenever F̄ (q,D) ∈ {0, 1}, and
F ′(q,D) is either 0 or 1 when F̄ (q,D) = ?.

Since the protocol computes all of Q×D correctly, it must be that F̄ (q,D) ∈ {0, ?} for
all q ∈ Q and D ∈ D. It remains to prove the following claim.

Claim 9.2.3. Consider any set Q ⊆ {0, 1, . . .m}d and D ⊆ ({0, 1, . . .m}d)n of size µd(Q) ≥
2−δρ logn and µd·n(D) ≥ 2−O(n1−δ). Then, there exists some q ∈ Q and D ∈ D such that
F̄ (q,D) = 1 (i.e., there exists a point p ∈ D such that ‖q − p‖∞ ≤ 1).

The claim is based on the following lemma that we prove in Section 9.3. This lemma is
a somewhat involved isoperimetric inequality on space with our distributions, and it is the
core component of our lower bound.

Lemma 9.2.4. Consider any set S ⊆ {0, 1, . . .m}d. Let N(S) be the set of points at
distance at most 1 from S under `∞: N(S) = {p | ∃s ∈ S : ‖p − s‖∞ ≤ 1}. Then
µd(N(S)) ≥ (µd(S))1/ρ.

Proof of Claim 9.2.3. Let N = N(Q) be the set of points at distance at most 1 from Q. By
the above lemma, µd(N) ≥ (µd(Q))1/ρ ≥ 1/nδ. We need to prove that there exists a set
D ∈ D that intersects with N . For D ∈ ({0, 1, . . .m}d)n, let σ(D) = |D ∩N |.
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Suppose D would be chosen at random from ({0, 1, . . .m}d)n (instead of D). Then
ED [σ(D)] ≥ n · n−δ = n1−δ. By Cherno� bound, σ(D) < 1 happens only with probability
at most e−Ω(n1−δ).

Thus, if we restrict to D ∈ D, we obtain PrD[σ(D) < 1 | D ∈ D] ≤ PrD[σ(D)<1]
Pr[D∈D] =

e−Ω(n1−δ) · 2O(n1−δ) < e−Ω(n1−δ).
Concluding, there exists some D ∈ D such that |N(Q) ∩D| ≥ 1, and thus there exists

some q ∈ Q and some p ∈ D such that ‖q − p‖∞ ≤ 1.

Finally, Claims 9.2.2 and 9.2.3 imply that either a = Ω(δρ logn) or b = Ω(n1−δ). This
concludes the proof of Theorem 9.0.12.

9.3 An Isoperimetric Inequality: Proof of Lemma 9.2.4
We now prove Lemma 9.2.4.

The core of the lemma is the following one-dimensional isoperimetic inequality. The rest
of the Lemma 9.2.4 results by an induction on the dimension.

Theorem 9.3.1. Let ρ be a large positive integer, and for i = 1 . . .m, πi = 2−(2ρ)i
, π0 =

1− (π1 + · · ·+ πm). Then for any non-negative real numbers β0, . . . , βm satisfying

π0β
ρ
0 + π1β

ρ
1 + · · ·+ πmβ

ρ
m = 1

the following inequality holds (where we set β−1 = βm+1 = 0)

m∑

i=0

πi max {βi−1, βi, βi+1} ≥ 1. (9.2)

Before proving Theorem 9.3.1, we complete the proof of Lemma 9.2.4 assuming this one-
dimensional theorem. Let's prove �rst the case of d = 1. We have a set S ⊂ {0, 1, . . .m},
and let βi = 1 i� i ∈ S. Then µ1(S) = π(S) =

∑
πiβi =

∑
πiβ

ρ
i . The set N(S) =

{
i ∈

{0, 1, . . .m} | max{βi−1, βi, βi+1} = 1
}

has measure, by Theorem 9.3.1,

µ1(N(S)) =
m∑

i=0

πi max{βi−1, βi, βi+1} ≥ (µ1(S))1/ρ.

Now let's prove the induction step. Consider S ⊂ {0, 1, . . .m}d, and, for i ∈ {0, 1, . . .m},
let Si = {(s2, s3, . . . sd) | (i, s2, . . . sm) ∈ S} be the set of points in S that have the �rst
coordinate equal to i. Then, letting βρi = µd−1(Si), we have that

m∑

i=0

πiβ
p
i =

∑

i

πiµd−1(Si) = µd(S).

We can lower bound the measure of N(S) as

µd(N(S)) ≥
m∑

i=0

πi ·max





µd−1(N(Si−1))
µd−1(N(Si))
µd−1(N(Si−1))
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where we assume, by convention, that S−1 = Sm+1 = 0.
By inductive hypothesis, µd−1(N(Si)) ≥ (µd−1(Si))1/ρ = βi for all i. Thus, applying

Theorem 9.3.1 once again, we conclude

µd(N(S)) ≥
∑

i

πi max{βi−1, βi, βi+1} ≥ (µd(S))1/ρ.

This �nishes the proof of Lemma 9.2.4.

9.3.1 The 1D case: Proof of Theorem 9.3.1
Let Γ =

{
(β0, . . . , βm) ∈ Rm+1 | π0β

ρ
0+π1β

ρ
1+· · ·+πmβρm = 1

}
, and denote by f (β0, . . . , βm)

the left hand side of (9.2). Then f is a continuous function on the compact set Γ ⊂ Rm+1,
so it achieves its minimum. Call an (m+1)-tuple (β0, . . . , βm) ∈ Γ optimal if f (β0, . . . , βm)
is minimal. Our proof strategy will be to show that if (β0, . . . , βm) is optimal, then βi = 1.

We consider several possible con�gurations for sizes of βi's in an optimal β in three
separate lemmas, and prove they are not possible. We then conclude the theorem by showing
these con�gurations are all the con�gurations that we need to consider.

Lemma 9.3.2. If there exists an index i ∈ {1, . . . ,m− 1} such that βi−1 > βi < βi+1, then
β̄ = (β0, . . . , βm) is not optimal.

Proof. De�ne a new vector β̄′ = (β0, . . . , βi−2, βi−1 − ε, βi + δ, βi+1 − ε, βi+2, . . . , βm), where
ε, δ > 0 are chosen suitably so that β̄′ ∈ Γ, and βi−1 − ε > βi + δ < βi+1 − ε. It's easy to
see that f

(
β̄
)
> f

(
β̄′

)
, which contradicts the optimality of β̄.

Lemma 9.3.3. If there exists an index i ∈ {1, . . . ,m} such that βi−1 > βi ≥ βi+1, then
β̄ =(β0, . . . , βm) is not optimal.

Proof. Let β =
(
πi−1β

ρ
i−1+πiβ

ρ
i

πi−1+πi

)1/ρ

and de�ne β̄′ = (β0, . . . , βi−2, β, β, βi+1, . . . βm). Then
β̄′ ∈ Γ, and βi−1 > β > βi.

We claim that f(β̄) > f(β̄′). Comparing the expressions for f
(
β̄
)
and f

(
β̄′

)
term by

term, we see that it's enough to check that

πi max {βi−1, βi, βi+1}+ πi+1 max {βi, βi+1, βi+2} >

> πi max {β, βi+1}+ πi+1 max {β, βi+1, βi+2}

where the terms involving πi+1 appear unless i = m. For i = m, the inequality becomes
βi−1 > β which holds by assumption. For i = 1, . . . ,m−1, the above inequality is equivalent
to

πi(βi−1 − β) > πi+1 · (max {β, βi+2} −max {βi, βi+2})
which, in its strongest form (when βi ≥ βi+2), is equivalent to πi(βi−1 − β) > πi+1(β − βi).
The last inequality is equivalent to

(
πiβi−1 + πi+1βi

πi + πi+1

)ρ

>
πi−1β

ρ
i−1 + πiβ

ρ
i

πi−1 + πi

which we can rewrite as (
ci + t

ci + 1

)ρ

− ci−1 + tρ

ci−1 + 1
> 0, (9.3)
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where ci = πi/πi+1 ≥ 2(2ρ)i+1−(2ρ)i (for i > 0 we have equality and for i = 0 we have
inequality because p is large), and t = βi/βi−1 ∈ [0, 1). Let F (t) denote the left hand side
of inequality (9.3) (which we are left to prove). Note that F (0) > 0, because:

(
ci

ci + 1

)ρ

=
(

1− 1
ci + 1

)ρ

≥ 1− ρ

ci + 1
> 1− 1

ci−1 + 1
=

ci−1

ci−1 + 1

where we have used Bernoulli's inequality (1− x)n ≥ 1− nx for 0 < x < 1/n and ci + 1 >
2(2ρ)i+1−(2ρ)i

> ρ · (2(2ρ)i
+ 1) = ρ( 1

πi−1
ci−1 + 1) > ρ(ci−1 + 1). Now we let t ∈ (0, 1) and

write F (t) = F (0) + tρG(t), where

G(t) =
1

(ci + 1)ρ

((
ρ

1

)
cρ−1
i

1
t

+
(
ρ

2

)
cρ−2
i

1
t2

+ · · ·+
(

ρ

ρ− 1

)
ci

1
tρ−1

)
+

+
(

1
(ci + 1)ρ

− 1
ci−1 + 1

)
.

If G(t) ≥ 0, then clearly F (t) ≥ F (0) > 0, so we are done. Otherwise, G(t) < 0, and in this
case it easily follows that G(1) < G(t) < 0, hence F (t) = F (0) + tρG(t) > F (0) + G(1) =
F (1) = 0, as desired. This concludes the proof of the lemma.

Lemma 9.3.4. If there is an index i ∈ {0, 1 . . . ,m− 1} such that βi−1 ≤ βi < βi+1, then
β = (β0, β1, . . . , βm) is not optimal.

Proof. We proceed as in the previous lemma. Let β =
(
πiβ

ρ
i +πi+1β

ρ
i+1

πi+πi+1

)1/ρ

, and de�ne β̄′ =
(β0, . . . , βi−1, β, β, βi+2, . . . , βm). As before, β̄′ ∈ Γ and βi < β < βi+1. We claim that
f(β̄) > f(β̄′). Comparing the expressions for f

(
β̄
)
and f

(
β̄′

)
term by term, we see that

it's enough to check that

πi−1 max {βi−2, βi−1, βi}+ πi max {βi−1, βi, βi+1} >

> πi−1 max {βi−2, βi−1, β}+ πi max {βi−1, β, β}

where the terms involving πi−1 appear unless i = 0. If i = 0, the above inequality becomes
βi+1 > β and we are done. For i = 1, . . .m− 1, the inequality is equivalent to

πi(βi+1 − β) > πi−1 · (max {β, βi−2} −max {βi, βi−2})

which, in its strongest form (when βi ≥ βi−2) is equivalent to πi(βi+1 − β) > πi−1(β − βi).
The latter inequality is equivalent to

(
πiβi+1 + πi−1βi

πi + πi−1

)ρ

>
πi+1β

ρ
i+1 + πiβ

ρ
i

πi+1 + πi

which we can rewrite as (
ci−1t+ 1
ci−1 + 1

)ρ

− cit
ρ + 1

ci + 1
> 0, (9.4)

where ci = πi/πi+1 as before, and t = βi/βi+1 ∈ [0, 1). Let F (t) denote the left hand side of
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(9.4) (which we are left to prove). Note that F (0) > 0, because
(

1
ci−1 + 1

)ρ

>
1

(2ci−1)ρ
=

1
πρi−1

· 2−ρ·(2ρ)i−ρ

> 2−ρ·(2ρ)
i−ρ ≥ 2(2ρ)i−(2ρ)i+1

=
1
ci
>

1
ci + 1

Now we let t ∈ (0, 1) and write F (t) = F (0) + tρG(t), where

G(t) =
1

(ci−1 + 1)ρ

((
ρ

1

)
ci−1

1
t

+
(
ρ

2

)
c2i−1

1
t2

+ · · ·+
(

ρ

ρ− 1

)
cρ−1
i−1

1
tρ−1

)
+

+
((

ci−1

ci−1 + 1

)ρ

− ci
ci−1 + 1

)
.

IfG(t) ≥ 0, then clearly F (t) ≥ F (0) > 0, so we are done. Otherwise, G(t) < 0, in which case
it easily follows thatG(1) < G(t) < 0, hence F (t) = F (0)+tρG(t) > F (0)+G(1) = F (1) = 0,
as desired. This concludes the proof of the lemma.

To prove Theorem 9.3.1, assume β̄ = (β0, . . . , βm) ∈ Γ is optimal. By Lemmas 9.3.2
and 9.3.3, it follows that β0 ≤ β1 ≤ · · · ≤ βm. Now Lemma 9.3.4 implies that β0 = β1 =
· · · = βm, so since β̄ ∈ Γ, we have βi = 1, and hence the minimal value of f over Γis
f (1, 1, . . . , 1) = 1.

This concludes the proof of the Theorem 9.3.1.

9.4 Lower Bounds for NN with a High Approximation
In this section, we present an argument why it is di�cult to prove any non-trivial lower
bounds for randomized NN problems for high approximation. Namely, we show that the
current techniques are not able to prove communication complexity lower bounds for ran-
domized NN problems for an approximation bigger than 3. The approximation factor of
3 seems to be fundamental here. For approximation less than 3, we actually know lower
bounds for NN under `∞, by reduction to the partial match problem.

Our arguments apply to NN over any metric. Let us consider a metricM with distance
function dM and the following problem.

De�nition 9.4.1 (NN underM). Fix R > 0, α > 0. Suppose Alice is given a point q ∈M,
and Bob is given the dataset D ⊂ M of size n. Then, in the R-Near Neighbor Search
problem, Alice and Bob compute the following function N(q,D):

• N(q,D) = 1 if there exists some p ∈ D such that dM(x, y) ≤ R;
• N(q,D) = 0 if for all p ∈ D, we have that dM(x, t) ≥ αR.
As before, when neither is the case, we set N(x, y) = ?.
In a randomized [a, b]-protocol Π, Alice sends at most a bits, Bob sends at most b bits,

and they produce the correct answer with probability at least 0.9.

An almost ubiquitous technique to prove a lower bound for the communication complex-
ity is by applying Yao's minimax principle. The principle says that if there exists a random-
ized [a, b]-protocol, then for any distribution µ onM×Mn, there exists some deterministic
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protocol Πµ succeeding on 0.9 mass of the distribution µ: E(q,D)∈µ [Πµ(x, y) = N(x, y)] ≥ 0.9
Thus one just need to exhibit a �hard� distribution where no deterministic protocol succeeds.
Most candidates for the �hard� distribution µ are product distributions, namely µ = µq×µD,
where µq and µD are independent distributions on q ∈M and D ∈Mn respectively.

Indeed, to the best of our knowledge, all known asymmetric communication complexity
lower bounds are proven via this approach with product distributions. It seems quite chal-
lenging to prove asymmetric communication complexity lower bounds for distributions that
are non-product.

We prove that it is not possible to prove lower bound for the NN problem with product
distributions when the approximation is bigger than 3. In fact, the argument applies even
to one-way protocol lower bounds, where one-way protocols are [a, 0]-protocols in which just
Alice sends a message of length a.

Lemma 9.4.2. Consider the problem N for approximation α. Consider any product distribu-
tion µ = µq×µD onM×Mn, and suppose for any [a, 0]-protocol Π, we have Eµ [Π(x, y) 6= N(x, y)] <
0.9. Then either α ≤ 3 or a = O(log n) or there exists (q,D) in the support of µ such that
N(q,D) = ?.

Proof. Assume that α > 3 and that a ≥ C log n for some big constant C. Let Q be
the support of µq and D be the support of µD. We will prove that there exists some
(q̃, D̃) ∈ Q×D such that N(q̃, D̃) = ?.

We will use a characterization of [KNR99] for one-way protocols for product distributions
to construct q̃, D̃.

First we need to give a de�nition. Consider the matrix M of size |Q| × |D| where
Mij = N(qi, Dj), where qi is the ith element of Q in, say, lexicographic order, and same with
Dj . The VC-dimension of M is the maximum v ∈ N such that there exists Dj1 , . . . Djv ∈ D
such that for any boolean vector z ∈ {0, 1}v, there exist qz ∈ Q with N(qz, Djk) = zk for all
k ∈ [v].

Since a ≥ C log n, the result of [KNR99] implies that the VC-dimension of the matrix
M is at least v ≥ log2 n + 2 (choosing C accordingly). Then, take a set of z's that is
Z ⊂ {1} × {0, 1}v−1 and has size |Z| ≥ n + 1. Suppose Z = {z(1), z(2), . . . , z(n+1)} and let
qz1 . . . qzn+1 be the queries such that, for all i = 1 . . . n+ 1, we have that N(qz(i) , Djk) = z

(i)
k

for all k ∈ [v]. In particular, for D = Dj1 , we have that N(qz, D) = 1, i.e., there exists
pz ∈ D, for each z ∈ Z, such that dM(qz, pz) ≤ R. By pigeonhole principle, there exists
some p ∈ D and distinct z′, z′′ ∈ Z such that dM(qz′ , p) ≤ R and dM(qz′′ , p) ≤ R. Thus, by
triangle inequality, dM(qz′ , qz′′) ≤ 2R. However, since z′ 6= z′′, there is some j ∈ {2, . . . v}
such that z′j 6= z′′j . In other words, wlog, dM(qz′ , Dj) ≤ R and dM(qz′′ , Dj) ≥ αR > 3R. But
this is not possible since, by triangle inequality, dM(qz′′ , Dj) ≤ dM(qz′′ , qz′)+dM(qz′ , Dj) ≤
2R+R = 3R � a contradiction.

9.5 Decision Trees Lower Bound
We formally de�ne what we mean by a decision tree for a data structure problem (see
also [KN97]). Consider a partial problem F : I → {0, 1} with I ⊂ X × Y , where X is the
set of �queries� and Y is the set of �datasets�.

For y ∈ Y , a decision tree Ty is a complete binary tree in which:

• each internal node v is labeled with a predicate function fv : X → {0, 1}. We assume
fv comes from some set F of allowed predicates.
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• each edge is labeled with 0 or 1, indicating the answer to the parent's predicate.

• each leaf is labeled with 0 or 1, indicating the outcome of the computation.

Evaluating Ty on x is done by computing the root's predicate on x, following the corre-
sponding edge, computing the next node's predicate, and so on until a leaf is reached. The
label of the leaf is the output, denoted Ty(x).

We let the size s of the tree to be the total number of the nodes. The depth d of the tree
is the longest path from the root to a leaf. The predicate size is w = dlog2Fe.

We say that problem F can be solved by a decision tree of size s, depth d, and predicate
size w i�, for any y, there exists some tree Ty of size at most s, depth at most d, and node
size at most w, such that Ty(x) = F (x, y) whenever (x, y) ∈ I.

Our result on the decision tree lower bound follows from the following folklore lemma,
which converts an e�cient decision tree solving a problem F into an e�cient communication
protocol.

Lemma 9.5.1. Consider any (promise) problem F : I → {0, 1}, where I ⊂ X×Y . Suppose
there exists a decision tree of size s, depth d, and node size w.

If Alice receives x ∈ X and Bob receives y ∈ Y , there exists a communication protocol
solving the problem F , in which Alice sends a total of a = O(log s) bits and Bob sends
b = O(dw log s) bits.

Proof. Before the protocol, Bob constructs his decision tree Ty. Suppose, for a moment, that
the decision tree is balanced, that is d = O(log s). Then, Alice and Bob can run the following
�ideal� protocol. In round one, Bob sends the predicate fr of the root r of the decision tree.
Alice computes fr(x) (a bit) and sends it back. Then Bob follows the corresponding edge in
the tree, and sends the predicate of the corresponding child, etc. We obtain communication
a ≤ d and b ≤ w · d.

In general, however, the decision tree TD is not balanced. In this case, Alice and Bob
can simulate a standard binary search on a tree. Speci�cally, Bob �nds a separator edge
that splits the tree in two components, each of size at least s/3. Let this separating edge
be (u, v). In round one, Alice and Bob want to detect whether, in the ideal protocol, Alice
would eventually follow the edge (u, v). To determine this, Bob sends the predicates for all
nodes on the path from the root r to u. Alice evaluates these predicates on x and sends
back a 1 if she would follow the edge (u, v), and 0 otherwise. Then, the players recurse on
the remaining part of the tree; they are done after O(log s) such rounds.

In the end, Alice sends only a = O(log s) bits, i.e. one bit per round. Bob sends O(d ·w)
bits per round, and thus b = O(dw log s).
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Chapter 10

Conclusions

In this thesis, we presented new e�cient algorithms for the nearest neighbor problem and
related tasks, obtained via old approaches as well as new ones. We also showed impossibility
results, pointing out the limits of the NN algorithms. Our contributions paint a more
complete and multifaceted landscape of the NN problem(s).

Our speci�c contributions are as follows. First, we designed a new algorithm for the
NN problem under the standard Euclidean distance. Our algorithm is based on the general
technique of Locality-Sensitive Hashing. Besides signi�cantly improving over the state-of-art
algorithm, our new algorithm is, in fact, near-optimal in the class of LSH-based algorithms.

In the next step we focused our attention to NN under other metrics, most notably
the string edit distance. We showed that, for this problem, the classical approaches �
such as embedding into `1, powers of `2, or using small�space sketches � fundamentally
cannot achieve an approximation factor below a near-logarithmic barrier. Our lower bound
also applies to an important variant of the edit distance, the Ulam distance, as well the
Earth-Mover Distance (EMD) over the hypercube.

Motivated by the above conclusion, we proposed a new approach to designing NN algo-
rithms, via embeddings into (iterated) product spaces. As a �proof of concept�, we showed
a new NN algorithm for the Ulam distance that overcomes the aforementioned barrier.
Our NN algorithm achieves a double-logarithmic approximation, which is an exponential
improvement over of the classical approaches.

At the same time, we demonstrated that our algorithmic tools, from both the old ap-
proaches and the new ones, extend to other problems as well. Speci�cally, we showed that
the LSH technique itself is useful for approximating kernel spaces. Furthermore, the concept
of embedding into product spaces was instrumental in designing algorithms on computing
edit distances. In one instance, we designed a near-linear time algorithm for the classi-
cal problem on computing the edit distance between two strings, with a greatly improved
approximation factor.

Finally, we show several data structure lower bounds for the NN problem under standard
Euclidean, Hamming, and `∞ distances. Our lower bounds are the �rst to hold in the same
computational models as the respective algorithms, and, in fact, match the parameters of
those algorithms.
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10.1 Open Questions
Although many of our results are near-optimal, our results open many avenues for further
exploration. Below we describe several intriguing questions that (we believe) hold they
key to improving our understanding of the NN problem and related questions, from both
practical and theoretical standpoints.

LSH-based NN algorithms. In Section 3.2.1, we showed the existence of hash func-
tions which yield near-optimal exponent in the running time of the LSH algorithm. This
greatly improves over the state-of-the-art hash functions from [DIIM04]. However, an im-
portant and fascinating open question remains to �nd a way to evaluate these new hash
functions e�ciently. If one were able to evaluate them in time comparable to that of func-
tions from [DIIM04], this would lead to search procedures that are orders of magnitude
faster than the current implementations of LSH (such as the E2LSH package [AI05], based
on [DIIM04]).

As we mentioned in Section 3.3.2, one way to obtain such faster hash functions is to use
particular high-dimensional lattices. For example, we have investigated the Leech Lattice, a
24-dimensional mathematical structure well-studied in the information theory community.
Finding its analogue for higher (or arbitrary) dimensions could provide the desired hash
functions.

Product spaces for NN and other problems. Another exciting question is that of
understanding the power of product spaces. At the moment, they remain quite poorly
understood, both in their richness (what are they good for?), and tractability (can we
design e�cient algorithms for them?).

Motivated by the developments for the Ulam distance, it is only natural to ask: is
it possible to embed the standard edit distance into some iterated product metric with
a constant distortion? Such a result, combined with our NN algorithm from Chapter 5,
could have far-reaching algorithmic implications, both in theory and in practice (see also
Section 2.1).

We can also ask a similar embedding question for the planar EMD metric. Here, too, we
know that classical approaches to the NN problem (embedding into standard spaces) meet
a concrete non-approximability barrier, and bypassing it would be of big signi�cance (see
Section 2.1).

Besides the application of product spaces to NN, it is also interesting to understand
the use of product spaces for other problems. For example, one particular question is to
understand the sketching complexity of the product spaces. Very recently, partial progress
has been made in [JW09, ADIW09].

From a more general viewpoint, we still lack technology to deal with the iterated product
spaces, as compared to the well established theory of `2 or `1 spaces. For instance, we need
tools to be able to prove non-embeddability results, or answer questions of the type �what
is the `simplest' iterated product space required for the Ulam distance?�

Furthermore, the appeal of the iterated product spaces comes also from the fact that
they may be seen as computational primitives. In particular, one may view an iterated
product space as a certain �circuit� of low-depth and polynomial size. For instance, the
product space resulting from the Ulam distance embedding is a circuit of depth 3, where
the lowest level has �`1� gates, the middle level has �`∞� gates, and the top-most level is
just one �(`p)p� gate. Is there more to be gained from this analogy?
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Edit and Ulam distances. Although not the immediate goal of this thesis, our results
also provide a better understanding of the classical edit distance. Yet this still remains only
the tip of the iceberg. There are many now-standard questions on edit distance, such as
�nding the best distortion embedding into `1 (see Section 1.3.2) and computing the distance
in near-linear time (see Chapter 6). Above we also mentioned the question of embedding
into iterated product spaces.

We bring forward another aspect: what is the exact relationship between the edit distance
and the Ulam distance, with the latter being just the restriction of the former to non-
repetitive strings? For one, for the Ulam distance, we know better algorithms than for
the general edit distance � namely, for distance computation in near-linear time (via the
�patience sorting� algorithm) and for NN with a double-logarithmic approximation (see
Chapter 5). We also know that the edit distance (on binary strings) is no easier than the
Ulam distance, at least up to constant approximation (see Chapter A).

Thus the following question emerges: is the edit distance (on binary strings) really
harder than the Ulam distance? At the moment, we have no lower bound separating the
two metrics. All the lower bounds for the edit distance on binary strings hold to (almost) the
same degree as for the Ulam distance, including non-embeddability into `1 (see [KR06] and
Chapter 7), or sketching lower bounds (see Chapter 7 and [AJP10]), or query complexity
for sub-linear time algorithms (see [BEK+03, AN10]). Thus, the only �provable hardness� of
the edit distance is already intrinsic to the Ulam distance. Separating these two distances
may pinpoint why the edit distance still lacks more e�cient algorithms.

Sketching. We have shown sketching complexity lower bounds for the Ulam, edit, and
EMD distances. As argued before, these provide more computational insight and robustness
to the lower bounds as compared to the previous `1 non-embeddability results, which were
of rather �geometric� �avor.

Nonetheless, it is natural to ask whether the two types of lower bounds � sketching
lower bounds and non-embeddability into normed spaces � are really that di�erent. In
one direction, embedding into normed spaces implies e�cient sketches (see Section 1.3.2).
The question is whether a form of the inverse relation holds: that non-embeddability into
normed spaces of a metric implies sketching lower bounds for that metric. Although such a
hope might seem far-fetched, our characterization from Section 7.2 suggests this is not out of
question, at least for restricted classes of metrics. Such a result would also be an important
step towards a bigger goal of characterizing sketchable metrics (see, e.g., [McG07, GIM08]).

NN data structure lower bounds. An important research direction is establishing
lower bounds for the NN algorithms under various metrics, such as the Euclidean (`2), the
Hamming (`1), `∞, or the edit distances.

For example, for the Hamming and Euclidean distances, the main question is: are the
LSH-based algorithms the best possible algorithms? In the regime of constant query time,
our results from Chapter 8 and the recent result of [PTW08] show that this is indeed the
case. A major question is to prove a nΩ(1/c2) query complexity lower bound, even in the
regime of near-linear space. We note, however, that we currently lack techniques able to
prove such lower bounds: we do not have super-logarithmic query lower bounds for any
static data structure problem.

For the `∞ distance, a natural next step would be to prove a randomized lower bound
for the communication complexity problem considered in Chapter 9. This already seems to
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highlight an interesting technical barrier we need to overcome. Speci�cally, most asymmetric
communication complexity lower bounds consider a product distribution (including our lower
bounds from Chapters 8 and 9). However, as we show in Section 9.4, such approach cannot
generally be used for proving NN lower bounds for approximation c > 3. (We note that
the result of [PTW08] does manage to surpass this barrier, albeit their lower bound holds
for a slighter harder problem than the decision NN problem we consider in our NN lower
bounds.)

We would also like to point out one curiosity that invites further investigation. Speci�-
cally, all (e�cient) NN algorithms for the Euclidean and Hamming distances are randomized
algorithms, and communication complexity lower bounds suggest that deterministic e�cient
algorithms might not be achievable (see [Liu04, PT06]). In contrast, for `∞, the only al-
gorithm we know of is a deterministic algorithm, but which achieves worse approximation
(double-logarithmic in the dimension, in the polynomial space regime). Furthermore, the
two algorithms seem fundamentally di�erent. Reconciling these di�erences is an interesting
question to explore.
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Appendix A

Reducing Ulam to Edit Distance on
0-1 strings

In this section we prove Lemma 2.1.1, namely that the Ulam distance is no harder than the
edit distance on binary strings, up to a constant factor approximation. The key idea is that
substituting every alphabet symbol independently with a random bit is likely to preserve
the edit distance, up to constant factor.

The basic intuition behind this proof is quite simple. The �rst part (the upper bound
on ed(π(P ), π(Q))) is immediate, and the main challenge is to prove the lower bound on
ed(π(P ), π(Q)). To prove the lower bound, we proceed by ruling out all �potential certi�-
cates� that ed(π(P ), π(Q)) is small. Speci�cally, a �potential certi�cate� is a potential �xed
alignment between π(P ) and π(Q) of low cost, i.e. a �xed monotone mapping that matches
monotonically all but at most 1

100 ed(P,Q) of the positions in π(P ) and π(Q). We then
analyze the probability that such an alignment is �successful�, in the sense that every pair
of positions that is matched under the potential alignment has equal symbols. Indeed, we
show this probability is exponentially small because many of the pairs matched are indepen-
dent coin tosses. We then apply a union bound over all potential alignment of small cost.
Although a direct union bound is not su�cient (there are too many potential alignments to
consider), we reduce the number of potential low-cost alignments by partitioning the set of
all such alignments into a smaller number of groups of �equivalent alignments�.

We proceed to set up some basic terminology and notation and to provide two lemmas
that will be used in the proof of the lemma.

For two permutations P,Q, we say that an index (position) i ∈ [d] in P is missing (from
Q) if the symbol P (i) does not appear inside Q.1 We say that a pair of indices {i, j} ⊆ [d]
is an inversion (in P with respect to Q) if the two characters P (i), P (j) appear in Q but in
the opposite relative order than in P , formally given by (i−j)(Q−1(P (i))−Q−1(P (j))) < 0.
We also say that index j is inverted with respect to i.

An alignment of two strings x, y ∈ Σd is a mapping A : [d] 7→ [d] ∪ {⊥} that is mono-
tonically increasing on A−1([d]) = {i ∈ [d] | A(i) ∈ [d]}. Intuitively, A models a candidate
longest common subsequence between x and y, and thus it maps indices in x to their re-
spective indices in y and takes the value ⊥ when there is no respective index in y (i.e., the
respective position of x is not in the candidate subsequence). A disagreement in the align-
ment A is an index i ∈ [d] for which A(i) 6= ⊥ and x(i) 6= y(A(i)). The alignment is called

1Remember that we have de�ned a permutation P as a string with a large alphabet where every symbol
appears at most once.
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successful if it has no disagreements. The cost of an alignment is the number of positions in
x (equivalently, in y) that are not mapped to a respective index in the other string, namely
|A−1(⊥)| = d− |A−1([d])| = d− |A([d])|, where A([d]) = {A(i) | i ∈ [d]}. It is easy to verify
that for all x, y,

1
2 ed(x, y) ≤ min

A
cost(A) ≤ ed(x, y), (A.1)

where the minimum is taken over all successful alignments A.
In the following claim, we present a property of strings P and Q that will let us prove

that, for a �xed potential alignment between π(P ) and π(Q), the probability of the alignment
being successful is very small.

Claim A.0.1. Let P,Q be two permutations of length d that contain the same symbols, i.e.
P ([d]) = Q([d]). Then there exists a collection ofm ≥ ed(P,Q)/4 inversions {i1, j1}, . . . , {im, jm}
such that i1, j1, . . . , im, jm are all distinct.

Proof. Fix P,Q. De�ne an (undirected) graph G with vertex set [d] and an edge {i, j}
whenever {i, j} is an inversion. Let E∗ ⊆ E(G) be a matching in G (i.e. no two edges in
E∗ share an endpoint) that is maximal with respect to containment. Observe that E∗ is
a collection of inversions whose indices are all distinct (as desired), and it only remains to
bound m = |E∗| from below. Following [SU04], we achieve the latter using the well-known
relation between maximal matching and vertex-cover.2

Let V ∗ be the set of vertices incident to any edge in E∗, thus |V ∗| = 2|E∗|. Clearly,
V ∗ is a vertex-cover of G, namely every edge (inversion) must have at least one endpoint
in V ∗. It follows that V \ V ∗ contains no edges (inversions), and thus immediately yields
a successful alignment A between P and Q. Formally, the subsequence of P obtained by
removing the positions V ∗ is also a subsequence of Q, and A is the monotone map matching
them. Thus, A(i) = ⊥ if and only if i ∈ V ∗ and cost(A) = 2|E∗|. Finally, using (A.1) we
get that m = |E∗| = 1

2 cost(A) ≥ 1
4 ed(P,Q).

We now give a claim that essentially lets us partition all potential alignments into a
small number of groups of equivalent alignments.

Claim A.0.2. Let P,Q be two permutations of length d. Fix 0 < γ < 1/2 and a subset
S ⊆ [d]. For an alignment A of P and Q (not necessarily successful), let A|S : S → [d]∪{⊥}
be a function that is equal to the function A on the domain S. De�ne

F = {A|S | A is an alignment of P and Q with cost(A) ≤ γ|S|}.

Then |F | ≤ (3e/γ)2γ|S|.

Proof. Let us denote s = |S|. An alignment of P with Q of cost at most γs can be described
as deleting exactly γs symbols from P and exactly γs symbols from Q. (We assume here for
simplicity that γs is an integer; otherwise, we round it up and change constants accordingly.)
Clearly, we can bound |F | by the number of such alignments between P and Q, namely
|F | ≤ (

d
γs

)(
d
γs

)
, but we aim to get a bound that depends on s = |S| and not on d, by more

carefully counting restrictions A|S .
An alignment A of P with Q of cost at most γs can be described as �rst deleting exactly

γs characters from P and then inserting into the resulting string exactly γs characters. Ob-
serve that A|S is completely determined from the following information: (a) which positions

2Another proof may be obtained using the O(1)-approximation in [GJKK07, Theorem 3.3].
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in S are deleted; (b) how many characters are deleted between every two successive indices
in S; and (c) how many characters are inserted between every two successive indices in S.
(When we say two successive indices in S, it should be interpreted to include also 0 and
d + 1 as indices in S, and in particular (b) describes also how many characters before the
�rst index in S are deleted from P .) Indeed, for each i ∈ S, data (a) determines whether
A(i) = ⊥. If A(i) 6= ⊥, then A(i) = i − di + ai where di is the total number of deletions
among indices 1, . . . , i − 1, which can be determined from data (a) and (b), and ai is the
total number of insertions before position i, which can be determined from data (c).

It remains to upper bound the number of possible outcomes to data (a)�(c). Clearly,
the outcomes for (a) and (b) together can be upper bounded by the number of outcomes of
throwing γs indistinguishable balls into 2s+ 2 bins (a bin per element in S which may get
at most one ball, a bin per each interval between elements in S and one extra bin to account
for case when the cost is strictly less than γs). This upper bound is equal to

(
2s+2+γs

γs

)

possible outcomes. The outcomes of data (c) can be similarly upper bounded by
(
s+1+γs
γs

)
.

Together, we obtain that

|F | ≤
(

2s+ 2 + γs

γs

)(
s+ 1 + γs

γs

)
≤

(e(2 + 2γ)
γ

)γs(e(1 + 2γ)
γ

)γs
≤

(3e
γ

)2γs
,

which proves the claim.

Having established the two claims, we proceed to prove Lemma 2.1.1, which states that
with high probability, Ω(ed(P,Q)) ≤ ed(π(P ), π(Q)) ≤ ed(P,Q).

Proof of Lemma 2.1.1. Fix two permutations P andQ of length d. The inequality ed(π(P ), π(Q)) ≤
ed(P,Q) follows immediately from the observation that every sequence of edit operations
to transform P into Q can be applied also to transform π(P ) and π(Q). It thus remains
to prove the other direction. Assume for now that P and Q use the same symbols, i.e.
P ([d]) = Q([d]). We will later explain how the general case follows using a similar argu-
ment.

Apply Claim A.0.1 to P,Q, and extract m ≥ ed(P,Q)/4 inversions {i1, j1}, . . . , {im, jm}
such that i1, j1, . . . , im, jm are all distinct. De�ne S = {i1, j1, . . . , im, jm}, hence |S| = 2m.
Fix γ = 1/100 and let F be de�ned as in Claim A.0.2 (with respect to our P,Q, S and γ).
By that claim, |F | ≤ (3e/γ)2γ|S| = (3e/γ)4γm. Note that F does not depend on π.

For every f ∈ F , let Ef be the event that all i ∈ S with f(i) 6= ⊥ satisfy π(P (i)) =
π(Q(f(i))). That is

Ef =
∧

i∈S\f−1(⊥)

{π(P (i)) = π(Q(f(i))}.

We claim that
Pr

[
ed(π(P ), π(Q)) < 1

2γ · ed(P,Q)
]
≤ Pr

[ ⋃

f∈F
Ef

]
. (A.2)

To prove the claim we show that ed(π(P ), π(Q)) < 1
2γ · ed(P,Q) implies that at least one of

the events Ef happens. Indeed, suppose there is a successful alignment A between π(P ) and
π(Q) that has cost 1

2γ · ed(P,Q) ≤ 2γm = γ|S|. Since A is successful, for all i ∈ S \A−1(⊥),
we must have π(P (i)) = π(Q(A(i)). Furthermore, we can think of A as an alignment
between P and Q, and then by de�nition, its restriction A|S must be in F .

We now bound Pr[Ef ] for any �xed f ∈ F , i.e. f = A|S for some alignment A of cost
at most γ|S| = 2γm. Since S is the union of m inversions {it, jt} with distinct indices,
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for at least (1 − 2γ)m of these inversions, we have that f(it), f(jt) 6= ⊥. For every such
inversion {it, jt}, it cannot be that both P (it) = Q(f(it)) and P (jt) = Q(f(jt)) (as that
would contradict the fact that the alignment A is increasing). Let at 6= bt denote these two
di�ering symbols (i.e. either at = P (it), bt = Q(f(it)) or at = P (jt), bt = Q(f(jt))), the
event Ef can only occur if π(at) = π(bt). We thus obtain (1 − 2γ)m requirements of the
form π(at) = π(bt). These requirements have distinct symbols at in their left-hand sides
(since they come from distinct positions in P ), and similarly, the right-hand sides contain
distinct symbols bt. Altogether, every symbol in Σ may appear in at most two requirements,
and thus we can extract (say greedily) a subcollection containing at least one half of these
requirements, namely, at least (1 − 2γ)m/2 ≥ m/4 requirements, such that every symbol
appears in at most one requirement. Since π is a random function, the probability that all
these requirements are satis�ed is at most 2−m/4, and we conclude that Pr[Ef ] ≤ 2−m/4.

To complete the proof of the lemma, we plug the last bound into (A.2) and use a union
bound and Claim A.0.2, which altogether gives

Pr
[
ed(π(P ), π(Q)) < 1

2γ · ed(P,Q)
]
≤ (3e/γ)4γm · 2−m/4 ≤ 2−m/8.

Finally, we extend the proof to the case where P and Q di�er on some symbols, i.e.,
there is at least a symbol in P that is not in Q (and vice-versa). De�ne Σ′ = P ([d])∩Q([d])
to be the set of symbols that appear in both P and Q. Let P ′ be the string obtained by
deleting from P the symbols not in Σ′, and let Q′ be obtained similarly from Q. Clearly,
P ′ and Q′ are permutations, they have the same length d′ = |Σ′|, and they use exactly the
same symbols. Furthermore, ed(P,Q) = ed(P ′, Q′) + Θ(d − d′). Applying Claim A.0.1 to
P ′, Q′, we get m ≥ ed(P ′, Q′)/4 inversions {i′1, j′1}, . . . , {i′m, j′m} such that i′1, j′1, . . . , i′m, j′m
are all distinct. Translating these positions to P yields m inversions {i1, j1}, . . . , {im, jm}
between P and Q, such that i1, j1, . . . , im, jm are all distinct. We then let S contain the
indices in these inversions and also the d − d′ indices in P containing the symbols not in
Σ′. It is not di�cult to see that we will still get |S| ≥ Ω(ed(P,Q)). Inversions will give
rise to requirements of the form π(a) = π(b) as before, and each index i where P (i) /∈ Σ′

gives rise to a requirement π(P (i)) = π(Q(f(i))). Altogether, after removing indices i such
that f(i) = ⊥, we still get at least |S|/8 requirements whose variables π(a), π(b) are all
distinct.
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