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Poincaré-Type Inequalities

Alexandr Andoni∗

Princeton U./CCI
andoni@mit.edu

T.S. Jayram
IBM Almaden

jayram@almaden.ibm.com

Mihai Pǎtraşcu†
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Abstract

We prove that any sketching protocol for edit distance
achieving a constant approximation requires nearly log-
arithmic (in the strings’ length) communication com-
plexity. This is an exponential improvement over the
previous, doubly-logarithmic, lower bound of [Andoni-
Krauthgamer, FOCS’07]. Our lower bound also ap-
plies to the Ulam distance (edit distance over non-
repetitive strings). In this special case, it is polyno-
mially related to the recent upper bound of [Andoni-
Indyk-Krauthgamer, SODA’09].

From a technical perspective, we prove a direct-sum
theorem for sketching product metrics that is of inde-
pendent interest. We show that, for any metric X that
requires sketch size which is a sufficiently large constant,
sketching the max-product metric `d∞(X) requires Ω(d)
bits. The conclusion, in fact, also holds for arbitrary
two-way communication. The proof uses a novel tech-
nique for information complexity based on Poincaré in-
equalities and suggests an intimate connection between
non-embeddability, sketching and communication com-
plexity.

∗Work done while at MIT.
†Work done while at IBM Almaden.

1 Introduction

The edit distance, as the most natural similarity metric
between two strings, shows up in algorithmic questions
of many different flavors:

computation: How fast can we estimate the edit dis-
tance between two large strings?

nearest neighbor: Can we preprocess a set of strings
using little space, such that database elements close
to a query string can be retrieved efficiently?

communication: If two parties have similar versions
of a document, how little can they communicate to
estimate the difference between their versions?

Variations on these question are ubiquitous. Appli-
cations range from computational biology, to allowing
programmers to synchronize and archive code changes,
to helping users who cannot spel.

Communication complexity. The main result in
this paper is an improved lower bound for the commu-
nication complexity of edit distance. Assume that the
two strings come from {0, 1}d. In FOCS’07, Andoni
and Krauthgamer [AK07] showed that, to approximate
edit distance within any constant factor, the two parties
need to communicate Ω(log log d) bits. All throughout
the paper, by “approximating edit distance” we mean
the decision version of the problem: where two players
are to decide whether the strings are at edit distance
at most R or at least αR for some threshold R and
approximation α.

Here, we exponentially improve their result to
show that a constant factor approximation requires
Ω( log d

log log d ) bits of communication. In general, we ob-
tain that with c bits of communication, the two parties
cannot approximate edit distance up to a factor better
than Ω( log d

log log d/c).
For the general edit distance, there seems to be

no consensus on how much communication should be
necessary. The current state of the upper bounds
is certainly dismal: there is no sublinear protocol
achieving constant approximation.



However, much better results are known for a re-
stricted subset of the edit distance, called the Ulam
distance. Formally, the Ulam distance is defined sim-
ilarly to the edit distance, except that the two strings
are requires to be permutations on [d]. This is meant to
capture the (arguably practical) scenario of nonrepeti-
tive edit distance: each long enough block of characters
appears uniquely in each string.

Our lower bound, as well as the previous result
of [AK07], holds even in the restricted case of Ulam dis-
tance. On the upper bound front, a recent paper of An-
doni, Indyk, and Krauthgamer [AIK09] from SODA’09
gave a protocol with O(log6 d) bits of communication,
which approximates the edit distance to within some
fixed constant. Thus, our lower bound is polynomially
close to the best known upper bound. In fact, we conjec-
ture that our lower bound is tight for the Ulam distance,
up to doubly-logarithmic factors.

To prove this result, we design a new communica-
tion complexity technique which is geared towards prod-
ucts spaces. Using the powerful information complex-
ity paradigm for communication complexity [CSWY01,
BJKS04], we reduce this problem to a direct sum
question for communication complexity. We introduce
a novel technique for proving information complex-
ity lower bounds based on Poincaré-type inequalities.
The latter are an indispensable tool in obtaining non-
embeddability results [Mat02] and our result demon-
strates that they are also intimately connected with
communication complexity.

In some sense, our lower bound is the best possible
result without exhibiting a separation between the edit
distance and its special case, the Ulam distance. Such
a separation appears like a significant milestone lying
ahead.

Metric embeddings. Though our results focus on
the communication problem, they are significant in the
broader context of edit distance questions.

The most promising current attack on the edit dis-
tance is through embedding it into simpler metrics. An
embedding is a mapping from strings to some normed
space X. The embedding is said to have distortion α
if, for any strings x, y, ed(x, y) ≤ ‖f(x)− f(y)‖X ≤
α · ed(x, y). Then, if the target metric admits a fast
(approximate) nearest neighbor solution, one can im-
mediately obtain a nearest neighbor solution for edit
distance, where the approximation is further multiplied
by α. A similar statement holds for communication pro-
tocols as well.

To demonstrate the power of this idea, one only
needs to mention that the state of the art on all fronts
comes from metric embeddings. In STOC’05, Ostrovski
and Rabani [OR05] described an embedding of edit dis-

tance into the space `1 with distortion 2O(
√

log d log log d).
This is currently the best approximation for both a near-
est neighbor data structure of polynomial space as well
as for estimating the edit distance in d1+o(1) time. The
latter result was achieved by Andoni and Onak [AO09]
only recently and requires additional ideas since it is un-
known whether the embedding can be implemented in
sub-quadratic time. The embedding also yields the best
known communication protocol with, say, polylog(d)
communication.

Given this success, proving non-embeddability re-
sults became an important direction. The question of
(non-)embeddability of edit distance into `1 appears
on the Matoušek’s list of open problems [Mat07], as
well as in Indyk’s survey [Ind01]. From the first non-
embeddability bound of 3/2 of [ADG+03], the bound
has been improved to Ω(log0.5−o(1) d) by Khot and
Naor [KN06], and later to the state-of-the-art Ω(log d)
bound of Krauthgamer and Rabani [KR06]. Later,
Andoni and Krauthgamer [AK07] prove an Ω( log d

log log d )
lower bound for embedding into more general classes of
spaces, which includes `1.

Recent evidence, however, shows these lower
bounds are unsatisfactory from a qualitative perspec-
tive. Traditionally, researchers have searched for em-
beddings into classic spaces from real analysis, such as
the Manhattan norm `1, the Euclidean norm `2, or per-
haps `∞. However, there seems to be no inherent rea-
son to restrict ourselves to such mathematically “nice”
spaces1. Indeed, one can consider other “target spaces”,
with the only restriction that the target metric is still
computationally nice, in the sense of having efficient
nearest neighbor data structures, or fast communica-
tion protocols.

The first compelling examples of this direction are
given by Andoni, Indyk, and Krauthgamer [AIK09] in
SODA’09. They show that the Ulam metric can be em-
bedded into the rather unusual metric, `1

(
`∞
(
(`1)2

))
,

with constant distortion. As a consequence, they obtain
state-of-the-art results regarding the Ulam metric:

• a nearest-neighbor data structure of O(n1+ε) space
with poly(d, log n) query time and O(log log d) ap-
proximation.

• a communication protocol for estimating the Ulam
norm with O(log6 d) bits of communication and an
O(1) approximation guarantee.

Let us look closer at their target space:
`1
(
`∞
(
(`1)2

))
. This distance can be computed

1At least for our applications at hand. We note that, in other

applications, such as sparsest cut problem, there is a general
interest of embedding finite metric spaces into, say, `1.



using a combination of the standard `1 and `∞ norms.
The inner term, (`1)2, is the square of the Manhattan
norm (which, technically speaking, is not itself a
metric). To define the distance in the space `∞

(
(`1)2

)
,

imagine the two points as two-dimensional matrices
and compute the difference matrix. On each row, the
(`1)2 norm is applied reducing the matrix to a vector.
On the resulting vector, we apply the `∞ norm, yielding
the `∞

(
(`1)2

)
norm. The final distance is obtained

by iterating this again, on three-dimensional arrays,
with `1 on the outside. Metrics obtained through
this composition process are called product metrics.
We note that the dimension of the `∞ component is
only O(log d), which is an important feature as `∞ is
metrically the hardest and it governs the performance
of the nearest neighbor search and communication
protocol for Ulam distance.

Note however, the success of product metrics casts
doubt on the relevance of the statements on non-
embeddability results into classic spaces such as `1 or
(`1)2. On the other hand, proving lower bounds for
embedding into metrics such as `1

(
`∞
(
(`1)2

))
seems

like a fool’s game, given the large number of possible
variations.

The proper attack, we believe, is to switch from
inherently geometric statements of non-embeddability,
and replace them with an information theoretic ap-
proach, of a more computer-science flavor. The metrics
that we may want to embed into have, almost by defini-
tion, low communication protocols for distance estima-
tion (since we only care to embed into “computation-
ally efficient” metrics). Thus, a communication lower
bound immediately implies non-embeddability into a
large class of metrics of interest.

For example, we obtain that Ulam metric does not
embed with constant distortion into the spaces `∞(M),
where M can be any of `1, (`1)2, `2, or (`2)2, and
`∞ has dimension k = o

(
log d

log logO(1) d

)
. This follows

from the fact that these metrics have communication
complexity of O(k log k) for constant approximation
(via the standard sketches for `1 and `2 [KOR00]).

Technical contribution. Our technical contribu-
tion is a new direct sum result in communication com-
plexity, geared towards metrics.

Recall that a distance (or dissimilarity) func-
tion [DD06] on a space X is a non-negative function d
on X 2 that is both symmetric (d(x, y) = d(y, x)) and re-
flexive (d(x, x) = 0). We consider “distance” functions g
that are also decision problems, i.e. range(g) = {0, 1}.
In the usual application, g corresponds to a distance
threshold estimation problem (DTEP) of distinguishing
instances of distance at most R or at least αR for some
threshold R and approximation α. Note that g is a

partial function, i.e. dom(g) ⊆ X 2.
Suppose the sketch complexity of g is a suffi-

ciently large constant. Let the function f(x,y) =∨n
i=1 g(xi, yi). We show that the communication com-

plexity of f is Ω(n). Such a result is somewhat easy to
show if g were defined on all of X 2. This is because it is
possible to identify 2-point sets A,B ⊆ X such that the
restriction g to A × B is isomorphic to the AND func-
tion on two bits. (Here is a proof sketch: in the distance
matrix of g, the diagonal entries are all equal to 0. Since
g has large communication complexity, g(x1, y1) = 1 for
some x1 6= y1. Moreover, if g(x, y) = 1 for all x 6= y,
then g is the non-equality function whose communica-
tion complexity is O(1). Therefore g(x0, y0) = 0 for
some x0 6= y0. Set A = {x0, x1} and B = {y0, y1}.
The argument can also be extended to arbitrary total
Boolean functions.) Then, f has a copy of the dis-
jointness function embedded inside it for which the Ω(n)
bound is a classical result in communication complex-
ity [KS92, Raz92]. Things are quite different when g
is a partial function. For example, let g(x, y) = 0 if
|x − y| ≤ 1 and |x − y| > 3, where 0 ≤ x, y ≤ 4. By
triangle inequality, any 2× 2 sub-matrix in the distance
matrix of g in which all 4 points are legal inputs for g
cannot be isomorphic to AND.

We tackle this problem by resorting to informa-
tion complexity which, informally speaking, character-
izes the minimum amount of information about the in-
puts that must be revealed by the players in a valid
protocol. Introduced as a formal measure first by
Chakrabarti, Shi, Wirth, and Yao [CSWY01] for two-
party simultaneous protocols, this was later extended
to handle non-product distributions for general proto-
cols by Bar-Yossef, Jayram, Ravi Kumar and Sivaku-
mar [BJKS04]. Appropriately, both these papers used
this measure to prove direct sum theorems. In order
to apply this methodology to our setting (in particular,
the Bar-Yossef et al. approach), we are faced with two
issues: (1) how to define the hard distribution and (2)
how to prove an information complexity lower bound.
For the former, the sketch complexity of g suggests us-
ing the distribution given by Yao’s Lemma. But is not
clear how to use it to prove an information complexity
bound.

We introduce a new technique for proving informa-
tion complexity bounds based on certain type of inequal-
ities that arise in functional analysis called Poincaré-
type inequalities. In metric embeddings, such inequali-
ties have been an indispensable tool in obtaining non-
embeddability results [Mat02] and in some cases are
equivalent to non-embeddability in (`2)2 [LLR95]. In
our case, we consider Poincaré-type inequalities for dis-
tance threshold estimation. Our main technical re-



sult shows how such inequalities can be used to ob-
tain strong information complexity lower bounds. A
special case of this argument was considered by Bar-
Yossef et al. [BJKS04] for R (under `1), and by Jayram
and Woodruff [JW09] for the Hamming cube.

To complete the argument, we need to prove appro-
priate Poincaré-type inequalities for distance threshold
estimation. Indeed, such inequalities are known for spe-
cial cases, e.g., the above results for R and the Hamming
cube are based on such inequalities, but there is no gen-
eral characterization. We give a characterization of a
class of Poincaré-type inequalities for any DTEP g: in
fact it is equivalent to the fact that g has sketch com-
plexity at least some large constant! (Recall that this
was the assumption with which we started.) Neither
direction is technically hard and in fact, one of them is
implied by an earlier argument in [AK07].

Organization. We start the presentation by re-
viewing communication complexity and the notion of
information complexity of a communication protocol, as
developed in [BJKS04]. This will be presented in Sec-
tion 2. Next, in Section 3, we show how, using the
direct sum on information cost theorem, one can ob-
tain communication complexity lower bounds from cer-
tain Poincaré-type inequality on a metric. Further, in
Section 4, we show that we may obtain this Poincaré-
type inequality from a more standard lower bound on
constant-sized protocols. Combining these two steps,
together with the lower bound of [AK07] for constant-
size protocols, we will obtain our main result: improved
communication lower bounds for edit and Ulam metrics.

2 Preliminaries

We consider the two-party communication model where
Alice gets an input in X and Bob gets an input in
Y. Their goal is to solve some communication problem
f , defined on a legal subset L ⊆ X × Y, by sending
messages to each other. In other words, f is a partial
function. We adopt the standard blackboard model
where the messages are all written on a shared medium.
A protocol P specifies the rules for Alice and Bob to
send messages to each other for all inputs in X × Y.
The protocol is said to be simultaneous or sketch-
based if Alice and Bob each write just a single message
based only on their respective inputs. The sequence
of messages written on the blackboard is called the
transcript. The maximum length of the transcript (in
bits) over all inputs is the communication cost of the
protocol P. The output of the protocol (which need
not be part of the transcript) is given by a referee
looking only at the transcript and not the inputs. The
protocol is allowed to be randomized in which each
player, as well as the referee, has private access to an

unlimited supply of random coins. The protocol solves
the communication problem f if the answer on any input
(x, y) ∈ L equals f(x, y) with probability at least 1− δ.
Unless mentioned explicitly, δ will be a small constant
and such protocols will be called as correct protocols.
Note that the protocol itself is legally defined for all
inputs in X × Y although no restriction is placed on
the answer of the protocol outside the legal set L. The
communication complexity of f , denoted by CC(f), is
the minimum communication cost of a correct protocol
for f .

In the next two sections, we will review the infor-
mation complexity paradigm for proving communication
lower bounds via direct sum arguments, as developed
in [BJKS04].2

2.1 Information Complexity

Notation. Random variables will be denoted by upper
case Roman or Greek letters, and the values they take by
(typically corresponding) lower case letters. Probability
distributions will be denoted by lower case Greek letters.
A random variable X with distribution µ is denoted by
X ∼ µ. If µ is the uniform distribution over a set W,
then this is also denoted as X ∈R W. Vectors will be
denoted in bold case.

Definition 2.1. A distribution µ over X × Y is par-
titioned by η if there exists a joint probability space
(X,Y, F ) such that (X,Y ) ∼ µ, F ∼ η, and (X,Y )
are jointly independent conditioned on F i.e. Pr(X,Y |
F ) = Pr(X | F ) · Pr(Y | F ). �

Definition 2.2. Let P be a randomized private-coin
protocol on the input domain X ×Y and let its random
coins be denoted by the random variable R. Suppose µ is
a distribution over X ×Y partitioned by η in some joint
probability space (X,Y, F ) where (X,Y ) ∼ µ and F ∼ η.
Extend this to a joint probability space over (X,Y, F,R)
such that (X,Y, F ) is independent of R. Now, let
Π = Π(X,Y,R) be the random variable denoting the
transcript of the protocol, where the randomness is both
over the input distribution and the random coins of the
protocol P. The (conditional) information cost of P
under (µ, η) is defined to be I(X,Y : Π | F ), i.e.,
the (Shannon) conditional mutual information between
(X,Y ) and Π conditioned on F .

The information complexity of a problem f under
(µ, η), denoted by ICµ(f | η), is defined to be the
minimum information cost of a correct protocol for f
under (µ, η). �

2The methodology also applies to general multi-party number-
in-hand communication which is not needed here.



Since I(X,Y : Π | D) ≤ H(Π) ≤ |Π|, it follows that
CC(f) ≥ ICµ(f | η).

2.2 Direct Sum Suppose f is a 0-1 decision problem
that can be expressed in terms of a simpler problem g:

f(x,y) ,
n∨
j=1

g(xi, yi).

Let g be defined on a set L ⊆ X × Y. The legal inputs
for f are pairs (x,y) such that (xi, yi) ∈ L for all i.
Identify Xn×Yn with (X ×Y)n so that the set of legal
pairs equals Ln. Any communication protocol for f is
well-defined for all inputs in Xn × Yn.

To relate the information complexity of f to that
of g, we proceed as follows. Suppose ν is a distribution
over L partitioned by ζ. We say that ν is collapsing if its
support is contained in g−1(0). Define the distributions
µ , νn and η , ζn by taking the n-fold product of ν
and ζ, respectively. µ is partitioned by η in some joint
probability space of (X,Y,F) where:

• for every i, (Xi, Yi) ∼ ν and Fi ∼ ζ;

• the triples over all i of (Xi, Yi, Fi) are jointly
independent of each other.

Proposition 2.1. (Direct Sum [BJKS04]) Let L ⊆
X × Y be the domain of a decision function g. Define
f(x,y) ,

∨n
j=1 g(xi, yi). Let ν be a collapsible distribu-

tion over L partitioned by η. Then,

CC(f) ≥ ICνn(f | ζn) ≥ n · ICν(g | ζ).

Consequently, the goal will be to prove a lower bound
on the information complexity of g. For the applications
considered in this paper, the information complexity of
g will be an O(1) quantity. Here, it will be fruitful
to transition from information measures to statistical
divergences, which is the subject of the next section.

2.3 Hellinger Distance

Notation. Let ‖�‖ denote the standard `2 norm.

Fix a protocol P, and let π(u, v) denote the prob-
ability distribution over transcripts induced by P on
input (u, v), where the randomness is over the private
coins of P. Let π(u, v)τ denote the probability that
the transcript equals τ . Viewing π(u, v) as an element
of `1, note that it belongs to the unit simplex since∑
τ π(u, v)τ = 1.

Let ψ(u, v) ∈ `2 be obtained via the square-root
map π(u, v) 7→ ψ(u, v) =

√
π(u, v). This means

ψ(u, v)τ =
√
π(u, v)τ for all τ . Now, ‖ψ(u, v)‖ =

∑
τ π(u, v)τ = 1, and so ψ(u, v) ∈ S+, where S+

denotes the unit sphere in `2 restricted to the non-
negative orthant. Following [Jay09], ψ(u, v) is called
the transcript wave function of (u, v) in P.

Definition 2.3. (Hellinger Distance) The
Hellinger distance between ψ1, ψ2 ∈ S+ is a scaled
Euclidean distance defined as

h(ψ1, ψ2) , 1√
2
‖ψ1 − ψ2‖ �

The scaling ensures that Hellinger distance is always
between 0 and 1. In this paper, we will mostly be
dealing with the square of the Hellinger distance, for
which the following notation is not only convenient
but also emphasizes the geometric nature of Hellinger
distance.

Notation. Let ‖̂ψ‖̂ , 1
2‖ψ‖

2 for ψ ∈ `2 so that
h2(ψ1, ψ2) = ‖̂ψ1 − ψ2‖̂. �

We summarize the relevant properties of Hellinger dis-
tance that are needed in this paper in Appendix A.

3 Information Complexity via Poincaré-type
Inequalities

In this section we present a new technique for proving
information complexity lower bounds. Fix a decision
problem g : L → {0, 1}, where L ⊆ X × X , that is also
a distance function on L. Formally, g is symmetric—
(x, y) ∈ L ⇐⇒ (y, x) ∈ L and g(x, y) = g(y, x) for all
(x, y) ∈ L—and reflexive—(x, x) ∈ L for all x ∈ X and
g(x, x) = 0 for all x ∈ X .

Suppose that there are two distributions η0 on
g−1(0) and η1 on g−1(1) with the following property.
For some fixed α > 0 and β ≥ 0, the following inequality
holds that for all vector-valued functions ρ : X → S+:

E(x,y)∼η0 ‖̂ρ(x)− ρ(y)‖̂ ≥ α ·E(x,y)∼η1 ‖̂ρ(x)− ρ(y)‖̂−β.
(3.1)

Call the above an (α, β)-Poincaré inequality for g with
respect to η0 and η1.

Theorem 3.1. Let g : L → {0, 1} be a distance func-
tion for some L ⊆ X 2 that satisfies an (α, β)-Poincaré
inequality with respect to distributions η0 on g−1(0) and
η1 on g−1(1). Then, there exists a collapsible distribu-
tion ν partitioned by some distribution ζ such that

ICν(g | ζ) ≥ α(1− 2
√
δ)− β

4

Proof. Let the random variables (U, V, S, T ) be defined
jointly as follows:

• S ∈R {a,b} and T ∼ η0.



• Suppose T = (u, v) ∈ X 2. Then we have two cases.
If S = a, then U ∈R {u, v} and V = v. Otherwise
S = b, and here U = u and V ∈R {u, v}.

We let ν be the distribution of (U, V ) and ζ be the
distribution of (S, T ). It follows that ν is partitioned by
ζ. Since (x, x) ∈ g−1(0) for all x, the support of ν is
contained in g−1(0), so ν is collapsible.

Let Π denote the transcript random variable in a
correct protocol for g. We bound the information cost of
this protocol as follows. Let Q(s, u, v) denote the event
“S = s ∧ T = (u, v)” for s ∈ {a,b} and (u, v) ∈ X 2.

I(U, V : Π | S, T )

=
∑

s∈{a,b}
(u,v)∈X 2

Pr[Q(s, u, v)] · I(U, V : Π | Q(s, u, v))

= 1
2 · E(u,v)∼η0

I(U, V : Π | Q(a, u, v))+

I(U, V : Π | Q(b, u, v))

≥ 1
2 · E(u,v)∼η0 ‖̂ψ(u, u)− ψ(u, v)‖̂+ ‖̂ψ(u, v)− ψ(v, v)‖̂

where the last inequality follows by applying the
Mutual-information-to-Hellinger-distance property of
Proposition A.1. Since ‖̂·‖̂ is the square of a metric,
applying Cauchy-Schwarz followed by the triangle in-
equality yields:

I(U, V : Π | S, T ) ≥ 1
4 · E(u,v)∼η0 ‖̂ψ(u, u)− ψ(v, v)‖̂

Now, we apply the Poincaré-type inequality satisfied by
g (Equation (3.1)) by setting ρ(x) = ψ(x, x) for all x.
We obtain:

I(U, V : Π | S, T )

≥ 1
4 ·
(
α · E(u,v)∼η1 ‖̂ψ(u, u)− ψ(v, v)‖̂ − β

) (3.2)

For the expression within the expectation in the RHS,
fix an (u, v) in the support of η1. By the Pythagorean
property of Proposition A.1,

‖̂ψ(u, u)− ψ(v, v)‖̂

≥ 1
2 ·
(
‖̂ψ(u, u)− ψ(u, v)‖̂+ ‖̂ψ(v, u)− ψ(v, v)‖̂

)
Since g(u, v) = g(v, u) = 1 for (u, v) in the support of η1,
and g(u, u) = g(v, v) = 0, we can apply the Soundness
property of Proposition A.1 in the above inequality to
get:

‖̂ψ(u, u)− ψ(v, v)‖̂ ≥ 1− 2
√
δ

Substituting this bound in (3.2), we get

I(U, V : Π | S, T ) ≥ α(1− 2
√
δ)− β

4

Combining the above main theorem and the direct sum
theorem, Theorem 2.1, we obtain the following:

Corollary 3.1. Let g be a 0-1 distance function that
satisfies an (α, β)-Poincaré inequality. Let f(x,y) =∨n
i=1 g(xi, yi). Then, CC(f) ≥ cn/4 where c = α(1 −

2
√
δ)− β.

Example 3.1. In [BJKS04], the authors prove a com-
munication lower bound for estimating `∞ via an in-
formation complexity and direct sum paradigm. The
function g that they consider is defined as follows. Let
u, v ∈ [0,m]; g(u, v) = 0 if |u− v| ≤ 1 and g(u, v) = 1 if
|u−v| = m. The authors show an Ω(1/m2) information
complexity lower bound for this problem. We can obtain
the same bound via Corollary 3.1.

Consider any mapping ρ : [0,m]→ S+. By Cauchy-
Schwarz and triangle inequality,

Eu∈R[0..m−1]‖̂ρ(u)− ρ(u+ 1)‖̂ ≥ 1
m2
· ‖̂ρ(0)− ρ(m)‖̂,

which is just a (1/m2, 0)-Poincaré inequality. By Corol-
lary 3.1, we obtain an Ω(1/m2) information complexity
bound.

Example 3.2. Consider the Hamming cube H =
{0, 1}d and its associated metric | · |. In [JW09], the
authors define a function g using H as follows. Let
x, y ∈ {0, 1}d; g(x, y) = 0 if |x− y| ≤ 1 and g(x, y) = 1
if |x − y| = d. The authors show an Ω(1/d) informa-
tion complexity lower bound for this problem and use
it to derive space lower bounds for estimating cascaded
norms in a data stream.

Consider any mapping ρ : H → S+. Let η0
denote the uniform distribution on the edges of H, i.e.,
pairs (u, v) such that |u − v| = 1. Let η1 denote the
distribution on the diagonals of H, i.e., pairs (u, u)
where u denotes the bit-wise complement of u. The
well-known “short-diagonals” property [Mat02] of the
Hamming cube states that

E(u,v)∼η0 ‖̂ρ(u)− ρ(v)‖̂ ≥ 1
d
· E(u,v)∼η1 ‖̂ρ(u)− ρ(v)‖̂.

This is a (1/d, 0)-Poincaré inequality, which by Corol-
lary 3.1 yields an Ω(1/d) information complexity bound.

4 Poincaré-type Inequalities via Hardness of
Sketching

Suppose g is a 0-1 distance function whose sketch com-
plexity is at least some large constant C for protocols
with error probability at most 1/3. We show that this
implies a Poincaré-type inequality for g under a suit-
able distribution derived from the hardness of g via



Yao’s lemma. This result can be interpreted as a con-
verse to a result in [AK07], where the authors show
that a Poincaré-type inequality implies a sketching lower
bound. Together with the results of the previous sec-
tion, this will enable us to derive new communication
complexity lower bounds.

Let ε = .1, and suppose C = Ω(1/ε4·log2 1/ε). First
we note that any protocol for g with success probability
≥ 1

2 + ε/3 has size at least C ′ = Ω(C · ε2).
By Yao’s principle, there exists a hard distribution

ψ for protocols of size < C ′. We decompose the distri-
bution ψ into two distributions with distinct support:
for i ∈ {0, 1}, we define distribution (x, y) ∼ ηi to
be the distribution ψ conditioned on g(x, y) = i. Let
pi = Prψ[g(x, y) = i] for i ∈ {0, 1}.

Claim 4.1. For any vector-valued function ρ : X →
S+, we have that

|E(x,y)∼η1‖ρ(x)− ρ(y)‖2−E(x,y)∼η0‖ρ(x)− ρ(y)‖2| < ε.
(4.3)

Proof. Note that p0, p1 ≥ 1
2 − ε/3 (otherwise, there

exists a trivial 1-bit protocol with success probability
at least 1

2 + ε/3).
For the sake of contradiction assume Equation (4.3)

does not hold, and, w.l.o.g.,

E(x,y)∼η1‖ρ(x)− ρ(y)‖2 − E(x,y)∼η0‖ρ(x)− ρ(y)‖2 ≥ ε.

Then, we show how to design a simultaneous-
message protocol of size O(1/ε2 · log2 1/ε) < C ′ that
has success probability ≥ 1

2 + ε/3.
Namely, we take a randomized protocol that esti-

mates the quantity ‖ρ(x) − ρ(y)‖2 up to additive ε/10
term, with probability 1− ε/10, using the `2 estimation
algorithm. Specifically, since ‖ρ(x)−ρ(y)‖2 ≤ 4, we can
just use a (1 + ε/40)-multiplicative `2 estimation proto-
col (e.g., via embedding `2 into the Hamming space and
then using the [KOR00] sketch). Note that the protocol
has size O(1/ε2) (for [KOR00] sketch), times O(log 1/ε)
(to boost the success probability to ≥ 1 − ε/10), times
another O(log 1/ε) (to guess the right scale); in other
words, the size of the protocol is less than C ′.

Let zxy be the estimate given by the `2 estimation
protocol on input (x, y). The protocol accepts with
probability exactly zxy. The resulting success proba-
bility is at least:

p1 · Eη1(1− ε/10)zxy + p0 · Eη0(1− ε/10)(1− zxy)

≥ 1− ε
3 + Eη1 ‖̂ρ(x)− ρ(y)‖̂ − Eη0 ‖̂ρ(x)− ρ(y)‖̂ − 3ε

10

≥ 1
2 + ε

3 .

This is a contradiction. The claim follows.

Combining the above claim with Corollary 3.1, we get:

Corollary 4.1. Let g be a 0-1 distance function
whose simultaneous-message communication complex-
ity is at least C, for some large absolute constant C,
with error probability at most 1/3. Then, the gen-
eral communication complexity of the problem f(x,y) =∨n
i=1 g(xi, yi) is Ω(n).

4.1 Applications to Product Spaces and Edit
Distance We first state our general corollaries, which
hold for product spaces. We then show how they imply
our lower bound on Ulam and edit distances.

We define two types of product spaces. Let (X, d)
be a metric space. A max-product of k ≥ 1 copies of X is
the metric (Xk, d∞), denoted `∞(X) or

⊕k
`∞
X, where

the distance between x = (x1, . . . xk), y = (y1, . . . yk) ∈
Xk is d∞(x, y) = maxi∈[k] d(xi, yi). Similarly, we define
the sum-product, which is the metric (Xk, d1), denoted
`1(X) or

⊕k
`1
X, where the distance between x, y ∈ Xk

is d1(x, y) =
∑
i∈[k] d(xi, yi).

We now define the distance threshold estimation
problem (DTEP) for a given metric X, approximation
factor α ≥ 1, and a threshold R > 0. The problem
is defined on pairs of points x, y ∈ X as follows. The
No instances are those where d(x, y) ≤ R. The Yes
instances are those where d(x, y) > αR. We denote this
problem as DTEP(X,α,R).

We are now ready to state the corollaries of the
direct sum theorem.

Corollary 4.2. (Max-product) There is an abso-
lute constant C > 1 such that the following holds. Fix
some metric X, threshold R > 0, and approximation
α ≥ 1. Suppose DTEP(X,α,R) has communication
complexity at least C.

Then, for any k ≥ 1, DTEP(
⊕k

`∞
X,α,R), defined

by the max-product of k copies of X, has communication
complexity of Ω(k).

Proof. Let g : X2 → {0, 1} be the function correspond-
ing to DTEP(X,α,R). Note that g(x, x) = 0 (No) as
d(x, x) = 0 ≤ R by the definition of the metric. Then,
for any k ≥ 1 DTEP(

⊕k
`∞
X,α,R) corresponds to the

function
∨k
i=1 gi where each gi = g for i ∈ [n]. The

result then follows from Theorem 4.1.

Corollary 4.3. (Sum-product) There are an abso-
lute constants C > 1 and c > 0 such that the following
holds. Fix some metric X, threshold R > 0, and ap-
proximation α ≥ 1. Suppose DTEP(X,α,R) has simul-
taneous communication complexity at least C.

For any 1 ≤ k ≤ cα the following holds. Consider
the space

⊕k
`1
X whose metric is given by the sum-



product of k copies of X. Then DTEP(
⊕k

`1
X,α/k, kR)

has communication complexity Ω(k).

Proof. We reduce the DTEP for the max-product space
of X to the DTEP for the sum-product space of X via
the identity mapping. This is because for any x, y ∈ Xk

such that d∞(x, y) ≤ R, we have that d1(x, y) ≤ kR
(i.e., when we view the points x, y in the metric of sum-
product of X). Similarly, when d∞(x, y) > αR, then
d1(x, y) > αR = α

k · kR. The result then follows using
the previous corollary.

We are now ready to prove our main result for the
Ulam and edit distance.

Theorem 4.1. Let d be the length of strings. There
exists some threshold R > 1 such that for con-
stant approximation, the DTEP for Ulam distance re-
quires Ω

(
log d

log log d

)
communication. More generally,

for any approximation α ≤ O
(

log d
log log d

)
, the DTEP

for Ulam distance has communication complexity of
Ω
(

log d
α·log log d

)
.

Same lower bound holds for edit distance over bi-
nary strings as well.

Proof. We use the following result of [AK07, Theorem
1.1].

Theorem 4.2. ([AK07]) There exists some absolute
constant c′ and threshold d0.1 ≤ R ≤ d0.49, such that,
for any approximation at most φ(d) = c′ log d

log log d , the
DTEP for Ulam distance has communication complexity
more than C.

Let k = φ(d0.99)/α. Let us denote the Ulam dis-
tance on strings of length l by Ulaml. Then, con-
sider the DTEP for the sum-product of k copies of
Ulamd0.99 . The above theorem, in conjunction with
Corollary 4.3, implies that, for approximation α, the
DTEP for

⊕k
`1

Ulamd0.99 has communication complex-

ity at least Ω(k) = Ω
(

log d
α·log log d

)
.

It remains to show that we can reduce the DTEP
for

⊕k
`1

Ulamd0.99 to the DTEP for Ulam distance for
strings of length d. Indeed, we can map the metric⊕k

`1
Ulamd0.99 into Ulamd preserving all distances. For

x = (x1, . . . xk) ∈
⊕k

`1
Ulamd0.99 , just construct ζ(x) ∈

Ulamd by concatenating x1 ◦ x2 ◦ . . . xk using a new
alphabet for each coordinate i ∈ [k], and appending
d − kd0.99 more copies of a symbol ⊥ that does not
appear in any of the other alphabets. It is immediate
to check that, for any x, y ∈

⊕k
`1

Ulamd0.99 , we have
that ed(ζ(x), ζ(y)) =

∑
i ed(xi, yi).

The result for edit distance on binary strings follows
from the result on Ulam metric together with Theorem
1.2 from [AK07], which shows a reduction from the
latter to the former.
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A Hellinger distance and Communication
Protocols

Proposition A.1. ([BJKS04]) Let P be a ran-
domized private-coin protocol on X × Y. Let
(u1, v1), (u2, v2) ∈ X × Y be two distinct inputs whose
transcript wave functions in P are denoted by ψ(u1, v1)
and ψ(u2, v2), respectively.

Mutual information to Hellinger distance:
Suppose (U, V ) ∈R {(u1, v1), (u2, v2)}. If Π denotes
the transcript random variable, then

I(U, V : Π) ≥ ‖̂ψ(u1, v1)− ψ(u2, v2)‖̂.

Soundness:
Suppose P is a correct protocol for a decision problem
g defined on L ⊆ X ×Y. Suppose (u1, v1), (u2, v2) ∈ L
such that g(u1, v1) 6= g(u2, v2). Then,

‖̂ψ(u1, v1)− ψ(u2, v2)‖̂ ≥ 1− 2
√
δ.

Pythagorean property:
Consider the combinatorial rectangle of 4 inputs
{u1, u2} × {v1, v2} and label them as A = (u1, v1),
B = (u1, v2), C = (u2, v1) and D = (u2, v2). Then,

‖̂ψ(A)− ψ(D)‖̂

≥

{
1
2 · (‖̂ψ(A)− ψ(B)‖̂+ ‖̂ψ(C)− ψ(D‖̂)
1
2 · (‖̂ψ(A)− ψ(C)‖̂+ ‖̂ψ(B)− ψ(D)‖̂)

�

The first property in the above proposition is just a re-
statement of the fact that the Jensen-Shannon distance
between ψ(u) and ψ(v) is bounded from below by their
Hellinger distance. The next property follows by relat-
ing Hellinger to variational distance and then invoking
the correctness of the protocol. The last property relies
on the structure of deterministic communication proto-
cols, namely, that the transcripts partition the space of
inputs into combinatorial rectangles. The property itself
can be seen as one generalization to randomized proto-
cols. (In [BJKS04], another property is shown which
generalizes the cut-and-paste property of deterministic
communication protocols. This is not needed for our
results.)
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