
On the Optimality of the Dimensionality Reduction Method∗

Alexandr Andoni
MIT

andoni@mit.edu

Piotr Indyk
MIT

indyk@mit.edu

Mihai Pǎtraşcu
MIT

mip@mit.edu

Abstract

We investigate the optimality of (1+ε)-approximation al-
gorithms obtained via the dimensionality reduction method.
We show that:

• Any data structure for the (1 + ε)-approximate nearest
neighbor problem in Hamming space, which uses con-
stant number of probes to answer each query, must use
nΩ(1/ε2) space.

• Any algorithm for the (1+ε)-approximate closest sub-
string problem must run in time exponential in 1/ε2−γ

for any γ > 0 (unless 3SAT can be solved in sub-
exponential time)

Both lower bounds are (essentially) tight.

1. Introduction

Dimensionality reduction is a powerful method for de-
signing efficient approximation algorithms for problems of
a geometric nature. Its main idea is simple: to solve a
problem defined over a high-dimensional geometric space
<d, map that space onto <k where k is “low”, and solve
the problem in the latter space. A prototypical tool used
for such purpose is the theorem by Johnson and Linden-
strauss [24], which states that there exists a randomized
mapping A : <d → <k, k = O(log(1/P)/ε2), such for
any x ∈ <d we have PrA[‖Ax‖2 = (1± ε)‖x‖2] ≥ 1− P .
This theorem is often instantiated with P = 1/nO(1) where
n is the size of the input data set in <d. In that case we
have k = O(log n/ε2), which can be much smaller than the
original dimension.

The above theorem (or its variants1) has led to numerous
algorithmic results for several algorithmic domains:

∗This work was supported in part by NSF CAREER award CCR-
0133849, David and Lucille Packard Fellowship and Alfred P. Sloan Fel-
lowship.

1This is arguably a broad statement, since the dimensionality reduction
techniques used in those papers are quite diverse. Nevertheless, all of them
can be replaced by Johnson-Lindenstrauss lemma (e.g., see [18] and the
Appendix), which in our opinion justifies this point of view.

• DATA STREAM COMPUTATION: A low-space algo-
rithm for maintaining the second frequency moment of
the data stream was shown in [4]. The algorithm pro-
vides a (1+ε)-approximation to the estimated quantity
while using only O(1/ε2) memory words. The prob-
lem has numerous applications, see [31].

• DATA STRUCTURES: Several data structures for the
(1 + ε)-approximate nearest neighbor problem in <d

were given in [21, 26, 17, 11, 2]. In particular, the data
structure of [26] uses nO(1/ε2) space and guarantees
(d + log n + 1/ε)O(1) query time.

• APPROXIMATION ALGORITHMS: Several n1/εO(1)
-

time (1 + ε)-approximate algorithms for various clus-
tering and pattern analysis problems were given,
e.g., in [32, 27, 23].

These algorithmic developments raise the natural ques-
tion: how close to optimal are the space/time bounds de-
rived using the dimensionality reduction method ? In addi-
tion to the theoretical importance of this question, resolving
it is of significant practical interest. The difference between
(say) 1/ε0.5 and 1/ε2 could easily mean the difference be-
tween a practical algorithm and an impractical one. This is
especially the case2 if the expression appears in the expo-
nent of the time/space bound.

What is known about this issue ? It is known [3] that
some n-point data sets cannot be mapped into a space of di-
mension k = o

(
log n/ε2

log(1/ε)

)
without distorting the distances

by a factor larger than (1 + ε); for the l1 norm, a polyno-
mial lower bound for the dimension k is known [7] for any
constant ε. However, this does not shed much light on the
issue of optimality of bounds for concrete applications of
that lemma. On the latter front, we are aware of only two
results:

• The aforementioned second frequency moment prob-
lem does require Ω(1/ε2) space [22, 35]. Thus, the

2Even if the bound is polynomial in 1/ε, the degree of the polynomial
is of key practical importance. E.g., see [13] for the discussion of this issue
in the context of streaming algorithms.

dimensionality reduction approach yields the optimal
bound for this problem.

• It has been observed in [19] that the techniques of [32]
yield a (1 + ε)-approximation algorithm for the k-
center problem in <d under the Euclidean metric, with
the running time exponential in k/ε2. However, it was
later showed that the same problem can be solved in
time dnkO(k/ε) [8]. Thus, here the dimensionality re-
duction gives a suboptimal bound.

In this paper we consider two problems which belong to
the two algorithmic domains (data structures and approxi-
mation algorithms) where the optimality of the dimension-
ality reduction method is not yet well-understood. Specif-
ically, we focus on the Approximate Near Neighbor (NN)
problem, and the Approximate Closest Substring (CSS)
problem. For both problems, we show lower bounds in-
dicating that the dimensionality reduction approach yields
algorithms whose time/space bounds have essentially opti-
mal (i.e., nearly quadratic) dependence on 1/ε.

Approximate Near Neighbor. We consider a decision
version 3 of the approximate nearest neighbor problem over
the Hamming space. Given a set P ⊂ {0, 1}d of n points
and a distance λ, build a data structure which given q ∈
{0, 1}d does the following, with probability at least, say,
2/3:

• If there is p ∈ P such that ‖q − p‖ ≤ λ, answer YES

• If there is no p ∈ P such that ‖q − p‖ ≤ (1 + ε)λ,
answer NO

Here we use ‖ · ‖ for the Hamming norm. It is standard to
assume cells have Θ(d) bits, i.e. a point can be stored in
one cell. The lower bound holds for the Euclidean space as
well.

This problem is closely related to the approximate near-
est neighbor problem. In fact, the aforementioned pa-
per [26] provides an algorithm for the (1 + ε)-NN problem,
using nO(1/ε2) space. Moreover, the algorithm has constant
query time (measured by the number of probes to the data
structure).

In this paper, we complement that result by showing that
any data structure for (1 + ε)-NN which achieves constant
query time must use nΩ(1/ε2) space4. To prove the lower

3The definition of the approximate near neighbor problem employed
here is somewhat weaker than the usual one. Specifically, it does not
require the algorithm to provide a “near” point in the YES case. How-
ever, this definition is more suitable for the reductions used in this paper.
Clearly, the lower bound for this version holds for stronger versions as
well.

4In this extended abstract we present a proof of a slightly weaker lower
bound of nΩ((1/ε2)/ log(1/ε)). The proof of the optimal bound is deferred
to the full version of this paper.

bound, we consider the asymmetric communication com-
plexity of the problem for dimension d = (1

ε lg n)O(1). That
is, we consider the setting where two parties, Alice and Bob,
are communicating in order to answer a query q. We as-
sume that Alice holds q, while Bob holds P . We show that
to solve the problem, either Alice sends Ω(1

ε2 lg n) bits, or
Bob sends Ω(n1−δ) bits, for any constant δ > 0. By the
standard relation to cell-probe complexity [29], this implies
that the lower bound on space. Therefore, the aforemen-
tioned algorithms are space-optimal. Our result is obtained
by showing a close relationship between the complexity of
the (1 + ε)-NN problem and the complexity of set disjoint-
ness. Lower bounds for the latter problem appeared in [29]
for the case of randomized protocols with one-sided error.
We give an analogous lower bound for the two-sided error
case, solving an open problem posed in that paper.

There has been a considerable number of results on lower
bounds for the near and nearest neighbor problems (e.g.
see [6, 10, 5, 11, 34] or [20] for a survey). Most ap-
ply to more restrictive (i.e, harder) versions of the prob-
lem, where either randomization or approximation are dis-
allowed. For randomized approximation algorithms for
the nearest neighbor problem, a tight query time bound of
Θ(lg lg d/ lg lg lg d) is known [11], for any constant ε and
polynomial space.

In contrast to that work, our result holds for the approxi-
mate near neighbor problem, and establishes a quantitative
dependence between the approximation factor and the expo-
nent in the space bound (for the constant query time case).
Given that the exponent must be quadratic in 1/ε, our results
indicate a fundamental difficulty in designing practical data
structures which are very accurate and very fast.

Our space lower bound also holds for a closely related
(1 + ε)-far neighbor problem (defined formally in sec-
tion 2.3).

Approximate Closest Substring. The Closest Substring
problem is a fundamental pattern analysis problem in com-
putational biology. Assume we are given a set of n strings
s1 . . . sn of length L over some alphabet Σ (in this paper we
focus on the case Σ = {0, 1}). Let D(·, ·) be the Hamming
metric. The goal is to find s ∈ Σd which is “close” to some
substring of each input string si. More formally, the goal is
to minimize

C(s) = max
i=1...n

min
s′=si[j...j+d−1]

D(s, s′)

The closest substring problem is a combinatorial formal-
ization of the task of finding motifs in DNA sequences,
which is of major interest in molecular biology (see [33, 25]
for background and references). The problem is NP-hard,
but its (1+ε)-approximate version can be solved in polyno-
mial time. Specifically [27] provided an algorithm for this
problem with running time (roughly) (nL)O(1/ε4). In the

appendix we show that, by combining known techniques,
one can reduce the exponent to 1/ε2 · log(1/ε).

In this paper we show a result indicating that any (1+ε)-
approximate algorithm for the closest substring problem
must have running time that is exponential5 in 1/ε2−γ , for
any γ > 0. The result is based on a strong assumption
about hardness of the 3-SAT problem. That is, we assume
that 3-SAT for formulas with n variables and O(n) con-
straints cannot be solved in time 2O(nb) for any fixed con-
stant b < 1. Our hardness result is then obtained by show-
ing the following: if, for any6 ε = ε(n) > 0 there is a
(1 + ε)-approximate algorithm for CSS with running time
polynomial in d, n and 21/ε2a

for a fixed constant a < 1,
then there exists an algorithm for 3-SAT with running time
2O(nb) for a fixed constant b < 1.

We note that earlier work [28, 12] investigated the issue
of optimality of approximation schemes for substring prob-
lems developed in [27] and their followups. However, they
approached this problem from the fixed-parameter tractabil-
ity point of view. That is, they asked if one can obtain a
running time of the form f(ε)nO(1) for some function f(·).
In comparison, the premise of our paper is that, in the expo-
nent of running time bound, 1/ε can create as much trouble
as log n; therefore, we focus on the dependence on 1/ε.

Our lower bound for the closest substring problem is
shown using the following approach. Firstly, we use the
short PCP construction of Dinur [15] to transform a given
3SAT formula φ into another formula φ′ of comparable size,
such that φ′ is either satisfiable, or no assignment can sat-
isfy more than 1−α < 1 fraction of φ′s clauses, for a fixed
constant α > 0.

In the next step, we transform the formula φ′ into an
instance of the hitting set (HS) problem, with similar gap
properties. Finally, we reduce the hitting set problem to the
CSS problem. Although somewhat involved, the reduction
is intuitively natural, since the goal of the CSS problem is
to find a “center” string that “hits” (i.e., is “close” to a sub-
string of) each input string. The main part of the reduction
is establishing a relation between cardinality (of the hitting
set) and proximity (i.e., the distance between the “center”
string and the “close” substrings of the input strings). This
task is accomplished by a variant of a theorem known in
the list-decoding literature as the Johnson bound (see [16]).
That theorem establishes an upper bound on the number of
codewords (of a “good” error-correcting code) in a ball of
certain radius. However, that upper bound is a constant fac-
tor away from the lower bound that we can establish for the
(randomly constructed) error-correcting code that we use;

5Actually, we can show that the exponent is at least
1/ε2/ logO(1)(1/ε), assuming even stronger hardness of 3-SAT.
We’ll ignore it for now.

6Our reduction uses values of ε that are subconstant in n (that is, ε→ 0
as n→∞).

for our reduction, we need that factor to be arbitrarily close
to 1. We resolve this issue by establishing a tighter Johnson-
type bound for random error-correcting codes.

Other implications. The techniques introduced in this
paper have applications beyond the ones mentioned so far.
Specifically, consider the following Minimum Enclosing
Ball (MEB) problem (with respect to the lp norm): given
Q ⊂ Rd, minimize R = Rp(Q) so that there exists x ∈ <d

such that ‖x − q‖p ≤ R for all q ∈ Q. A weak ε-coreset
[9] for an MEB instance is a subset S ⊂ Q such that
Rp(S) ≥ (1− ε)Rp(Q). Weak coresets have numerous ap-
plications for clustering of high-dimensional data (see [1]
for a survey); often, the coreset size appears in the exponent
of the running time bound.

It it known [8] that, in the l2 norm, any set contains a
weak ε-coreset of size 1/ε. In this paper we show that, in
the l1 norm, a weak ε-coreset must have size Ω(1/ε2).

2. Lower bounds for the approximate near
neighbor

For proving the lower bound, we analyze the asymmet-
ric communication complexity of (1 + ε)-NN via a re-
duction from the set disjointness problem. In the set dis-
jointness problem, Alice receives a set S from a universe
[U] = {1 . . . U}, |S| = m, and Bob receives a set T ⊂ [U]
of size n. They need to decide whether T ∩ S = ∅. We
prove the following asymmetric communication complex-
ity lower bound for the latter problem.

Theorem 1. Assume Alice receives a set S, |S| = m and
Bob receives a set T, |T | = n, both sets coming from a uni-
verse of size 2mn, for m < nγ , where γ < 1 is a constant.
In any randomized, two-sided error communication proto-
col deciding disjointness of S and T , either Alice sends
Ω(m lg n) bits or Bob sends Ω(n1−δ) bits, for any δ > 0.

The proof of this theorem is deferred to the full version.
In Section 2.2, we present the proof of a slightly weaker ver-
sion of this theorem, which implies a dependence of 1/ε2

log(1/ε)

instead of 1/ε2.
From the reduction in Section 2.1 and the above theorem

for m = 1
9ε2 , we derive the following theorem on asymmet-

ric communication complexity of the (1 + ε)-NN problem:

Theorem 2. Consider the communication complexity ver-
sion of (1 + ε)-NN in {0, 1}d, d = O(log2 n

ε5), where Alice
receives the query q ∈ {0, 1}d and Bob receives the set
P ⊂ {0, 1}d. Then, for any ε = Ω(n−γ), γ < 1/2, in any
randomized protocol deciding the (1 + ε)-NN problem, ei-
ther Alice sends Ω(log n

ε2) bits or Bob sends Ω(n1−δ) bits,
for any δ > 0.

From the above theorem, we can obtain the nO(1/ε2)

lower bound on space for any data structure implementing
(1 + ε)-NN problem with a constant time query. Specifi-
cally, we apply Lemma 1 from [29], which states:

Lemma 1 ([29], Lemma 1). If there is a solution to the data
structure problem with space s, query time t, and cell size
b, then there exists a protocol where Alice sends 2tdlog se
bits and Bob sends 2tb bits.

For t = O(1), and cell size b < O(n1−δ), for some
δ > 0, Bob sends an insufficient number of bits. Thus,
Alice needs to send 2tdlog se > Ω(m log n) bits. Solving
for s, we obtain that space is s = nΩ(1/ε2). Note that the
cell size b is usually much smaller than n1−δ , typically b =
d logO(1) n.

2.1. Reduction from asymmetric set dis-
jointness to (1 + ε)-near neighbor

We prove that we can reduce asymmetric set disjointness
problem to the approximate near neighbor. A randomized
[a, b]-protocol for a communication problem is a protocol in
which Alice sends a bits and Bob sends b bits, and the error
probability of the protocol is bounded away from 1/2.

Lemma 2. Suppose there exists a randomized [a, b]-
protocol for the (1 + ε)-NN problem with d = O

(
log2 n

ε5

)
,

where Alice receives the query q ∈ {0, 1}d and Bob receives
the dataset P ⊂ {0, 1}d of size n. Then there exists a ran-
domized [a, b]-protocol for asymmetric set disjointness in an
arbitrary universe [U], where Alice receives a set S ⊂ [U]
of size m = 1

9ε2 , and Bob receives a set T ⊂ U of size n.

Proof. We show how to map an instance of asymmet-
ric set disjointness, given by T and S, into an instance
of (1 + ε)-NN, given by respectively the dataset P ⊂
{0, 1}d and the query q ∈ {0, 1}d. For this purpose,
first, Alice and Bob map their sets S and T into query
q̃ ∈ <U and dataset P̃ ⊂ <U , i.e., an (1 + ε)-NN in-
stance in Euclidean U -dimensional space, lU2 . Then, Al-
ice and Bob map their points from the lU2 metric to Ham-
ming cube {0, 1}O(log2 n/ε5), essentially preserving the dis-
tances among all the points q̃ and P̃ . This method for reduc-
ing a communication complexity problem into an approxi-
mate problem involving Hamming distance appeared earlier
in [22], albeit in the context of different problems.

For the set T ⊂ [U], we define P̃ , {eu | u ∈ T},
where eu is a standard <d basis vector, with 1 in the uth

coordinate, and 0 everywhere else. For the set S, we set the
query q̃ , 3ε ·

∑
u∈S eu; note that ‖q̃‖2

2 = m · (3ε)2 = 1.
We show that if S ∩ T = ∅, then ‖q̃ − p̃‖2 =

√
2 for all

p̃ ∈ P̃ , and, if S ∩ T 6= ∅, then there exists a point p̃ ∈ P̃
such that ‖q̃ − p̃‖2 ≤ (1− 4ε

3)
√

2. Indeed, we have that

• if S ∩ T = ∅, then for any p̃ ∈ P̃ , we have that ‖q̃ −
p̃‖2

2 = ‖q̃‖2
2 + ‖p̃‖2

2 − 2q̃ · p̃ = 2;

• if S ∩ P 6= ∅, then for u∗ ∈ S ∩ P and for p̃ =
eu∗ ∈ P , we have ‖q̃− p̃‖2

2 = ‖q̃‖2
2 + ‖p̃‖2

2 − 2q̃ · p̃ =
2− 2(3εeu∗) · eu∗ = 2(1− 3ε).

To construct P ⊂ {0, 1}d and q ∈ {0, 1}d, Alice and
Bob perform a randomized mapping of lU2 into {0, 1}d for
d = O(log2 n/ε5), such that the distances are only in-
significantly distorted, with high probability. Alice and
Bob use a source of public random coins to construct the
same randomized mapping. First, they construct a random-
ized embedding f1 mapping lU2 into l

O(log n/ε2)
1 with dis-

tortion less than (1 + ε/16) (cf. [19]). Then, they con-
struct the standard embedding f2 mapping l

O(log n/ε2)
1 into

{0, 1}O(log2 n/ε5). The embedding f2 first scales up all co-
ordinates by D = O(log n

ε3), then rounds the coordinates,
and finally transforms each coordinate into its unary repre-
sentation. We set the constants such that the resulting ap-
proximation of f2 is an additive term O(log n

ε2) < Dε
√

2
16 .

Next, Alice and Bob construct q = f2(f1(q̃)) ∈ {0, 1}d

and P = {f2(f1(p̃)) | p̃ ∈ P̃} ⊂ {0, 1}d. Notice that for
any p = f2(f1(p̃)) ∈ P , if ‖q̃ − p̃‖2 ≥

√
2, then ‖q −

p‖H ≥ D
√

2(1 − ε/16) − Dε
√

2
16 = D

√
2(1 − ε

8), and if
‖q̃−p̃‖2 ≤

√
2(1− 4ε

3), then ‖q−p‖H ≤ D
√

2(1− 4ε
3)(1+

ε/16) + Dε
√

2
16 ≤ D

√
2(1− ε− 5ε

24).
Finally, Alice and Bob can run the (1+ε)-NN communi-

cation protocol with λ = D
√

2(1−ε− 5ε
24) to decide whether

S ∩ T = ∅. Note that the error probability of the resulting
set disjointness protocol is bounded away from 1/2 since
(1 + ε)-NN communication protocol has error probability
bounded away from 1/2, and the embedding f2 ◦ f1 fails
with probability at most n−Ω(1).

2.2. Lower bound for asymmetric set dis-
jointness

In this section, we prove a slightly weaker version of
Theorem 1:

Theorem 3. Assume Alice receives a set S, |S| = m and
Bob receives a set T, |T | = n, both sets coming from a
universe of size 2mn, for m < nγ , where γ < 1/3 is a
constant. In any randomized, two-sided error communica-
tion protocol deciding disjointness of S and T , either Alice
sends Ω(m

log m lg n) bits or Bob sends Ω(n1−δ/m2) bits, for
any δ > 0.

First we define the hard instance. The elements of our
sets come from the universe [2m]× [n]. Alice receives S =
{(i, si) | i ∈ [m]}, for s1, . . . , sm chosen independently
at random from [n]. Bob receives T = {(tj , j) | j ∈ [n],
for t1, . . . , tn chosen independently from [2m]. The output

should be 1 iff the sets are disjoint. Note that the number of
choices is nm for S and (2m)n for T , and that S and T are
chosen independently.

The lower bound follows from the following variant of
the richness lemma, based on [29, Lemma 6]. The only
change is that we make the dependence on ε explicit, be-
cause we will use ε = o(1).

Lemma 3. Consider a problem f : X × Y → {0, 1},
such that the density of {(x, y) | f(x, y) = 1} in X × Y
is Ω(1). If f has a randomized two-sided error [a, b]-
protocol, then there is a rectangle of f of dimensions at
least |X|/2O(a lg(1/ε)) × |Y |/2O((a+b) lg(1/ε)) in which the
density of zeros is at most ε.

To apply the lemma, we first show the disjointness func-
tion is 1 with constant probability.

Lemma 4. As S and T are chosen randomly as described
above, Pr[S ∩ T = ∅] = Ω(1).

Proof. Note that S ∩ T ⊂ [n] × [m]. We have Pr[(i, j) ∈
S∩T] = 1

n(2m) when i ∈ [n], j ∈ [m]. Then by linearity of
expectation E[|S ∩ T |] = 1

2 . Since |S ∩ T | ∈ {0, 1, 2, . . . },
we must have Pr[|S ∩ T | = 0] ≥ 1

2 .

Thus, it remains to show that no big enough rectangle
has a small density of zeros. Specifically, we show the fol-
lowing:

Lemma 5. Let δ > 0 be arbitrary. If we choose S ∈
S, T ∈ T uniformly and independently at random, where
|S| > 2n(1−δ)m and T ≥ (2m)n · 2/en1−δ/(8m2), then the
probability S ∩ T 6= ∅ is at least 1

16m2 .

We use the richness lemma with ε = 1
32m2 . If there

exists an [a, b] protocol for our problem, we can find a rect-
angle of size

(
nm/2O(a lg m)

)
×
(
(2m)n/2O((a+b) lg m)

)
,

in which the fraction of zeros is at most ε. To avoid contra-
dicting Lemma 5, we must either have 2O(a lg m) > nδm/2,
or 2O((a+b) lg m) > en1−δ/(8m2)/2. This means either a =
Ω(m

lg m lg n) or a + b = Ω(n1−δ/(m2 lg m)). If m < nγ ,
for constant γ < 1

3 , this implies that a = Ω(m
lg m lg n) or

b = Ω(n1−δ/m2), for any δ > 0.

Proof. (of Lemma 5) Choosing S at random from S induces
a marginal distribution on [n]. Now consider the heaviest
n1−δ elements in this distribution. If the total probability
mass of these elements is at most 1 − 1

2m , we call i a well-
spread coordinate.

Lemma 6. If |S| > 2n(1−δ)m, there exists a well-spread
coordinate.

Proof. Assume for contradiction that no coordinate is well-
spread. Consider the set S ′ formed by S ∈ S such that

no si is outside the heaviest n1−δ elements in Si. By a
union bound, the probability over S ∈ S that some si is
not among the heavy elements is at most m 1

2m = 1
2 . Then,

|S ′| ≥ |S|/2. On the other hand |S ′| ≤ (n1−δ)m, since
for each coordinate we have at most n1−δ choices. This
contradicts the lower bound on |S|.

Let i be a well-spread coordinate. We now lower bound
the probability of S ∩ T 6= ∅ by the probability of S ∩ T
containing an element on coordinate i. Furthermore, we
ignore the n1−δ heaviest elements of Si. Let the remaining
elements be W , and p(j) = Pr[si = j] when j ∈ W . Note
that p(j) ≤ 1/n1−δ , and

∑
j∈W p(j) ≥ 1

2m .
Define σ(T) =

∑
j∈W :tj=i p(j). For some choice of T ,

σ(T) gives exactly the probability of an interesting inter-
section, over the choice of S ∈ S . Thus, we want to lower
bound ET [σ(T) | T ∈ T].

Assume for now that T is uniformly distributed in the
original space (not in the subspace T). Note that σ(T) =∑

j∈W Xj , where Xj is a variable equal to p(j) when
tj = i and 0 otherwise. By linearity of expectation,
ET [σ(T)] =

∑
j∈W

p(j)
2m ≥ 1/(2m)2. Since Xj’s are in-

dependent (tj’s are independent when T is not restricted),
we can use a Chernoff bound to deduce σ(T) is close to this
expectation with very high probability over the choice of T .
Indeed, Pr[σ(T) < 1

2 ·
1

(2m)2] < e−n1−δ/(8m2).
Now we can restrict ourselves to T ∈ T . The prob-

ability σ(T) < 1
8m2 is so small, that it remains small

even in this restricted subspace. Specifically, this prob-
ability is at most Pr[σ(T) < 1

8m2]/ Pr[T ∈ T] ≤
exp(−n1−δ/(8m2))/(2 exp(−n1−δ/(8m2))) = 1

2 . Since
σ(T) ≥ 0, (∀)T , we conclude that ET [σ(T) | T ∈ T] ≥
1
2 ·

1
8m2 = 1

16m2 .

2.3. Approximate far neighbor problem

The above lower bound for the (1 + ε)-NN problem can
also be transferred to the (1 + ε)-far neighbor problem,
yielding exactly the same space lower bound. Formally,
we define the (1 + ε)-far neighbor as follows. Given a set
P ⊂ {0, 1}d of n points and a distance λ, build a data struc-
ture which given q ∈ {0, 1}d does the following, with prob-
ability at least, say, 2/3:

• If there is p ∈ P such that ‖q − p‖ ≥ λ, answer YES

• If there is no p ∈ P such that ‖q − p‖ ≥ λ/(1 + ε),
answer NO

The lower bound results from the following lemma, an
equivalent of lemma 2.

Lemma 7. Suppose there exists a randomized [a, b]-
protocol for the (1 + ε)-far neighbor problem with d =

O
(

log2 n
ε5

)
, where Alice receives the query q ∈ {0, 1}d and

Bob receives the dataset P ⊂ {0, 1}d of size n. Then there
exists a randomized [a, b]-protocol for asymmetric set dis-
jointness in an arbitrary universe [U], where Alice receives
a set S ⊂ [U] of size m = 1

9ε2 , and Bob receives a set
T ⊂ U of size n.

As before, together with theorem 1, this lemma im-
plies that any data structure for (1 + ε)-far neighbor prob-
lem achieving constant number of cell probes, has space
nΩ(1/ε2).

Proof (of lemma 7). Same as the proof of lemma 2, except
set the query q̃ = −3ε

∑
u∈S eu.

3. Lower bounds: Approximate closest sub-
string problem

In this section we focus on the Approximate Closest Sub-
string problem.

Our goal is to show a lower bound of 21/ε2a

, for any
a ∈ (0, 1), for a running time of an algorithm solving
(1 + ε)-approximate CSS. We do it by using the follow-
ing assumption. Recall that in a Hitting Set (HS) problem,
we are given sets A1 . . . An ⊂ [m], and the goal is to find
H ⊂ [m] which intersects each Ai and minimizes |H|. Our
assumptions are stated as the following two conjectures.

Conjecture 1. For any constant a ∈ (0, 1), there exists a
constant Ca > 1 such that no Ca-approximate algorithm
for the hitting set problem has running time 2O(ma).

In the following, we show that this conjecture is implied
by another (more palatable) one.

Conjecture 2. For any a ∈ (0, 1), there is no algorithm
solving 3-SAT with O(n) constraints over n variables, with
running time 2O(na).

Theorem 4. Conjecture 2 implies Conjecture 1. That is, if
there exists a < 1 such that for every constant Ca > 1 there
exists a Ca-approximation algorithm for HS with running
time 2O(ma), then there exists an algorithm for 3SAT over n

variables with O(n) constraints, with running time 2O(nb)

for some b < 1.

The proof will follow from the following two reductions.
The first one follows from the PCP construction by [15].
Specifically, for any 3SAT formula φ, let SAT (φ) be the
maximum fraction of clauses satisfiable by any assignment.
Dinur [15] proved the following:

Fact 1. There is a polynomial-time algorithm which, given
a 3SAT formula φ with m variables and O(m) constraints,
outputs a 3SAT formula φ′ with m′ = m logO(1) m vari-
ables such that each variable occurs in exactly the same
(and constant) number of constraints, and:

• If φ satisfiable then φ′ satisfiable.

• If φ is not satisfiable, then SAT (φ′) ≤ 1− α.

where α > 0 is an absolute constant.

The relation between the hitting set problem and the
3SAT problem is captured in the following lemma.

Lemma 8. There is a polynomial-time algorithm which,
given a 3 SAT formula φ with n variables, where each vari-
able occurs in exactly the same number B′′ constraints, pro-
duces an instance of HS with m = 2n such that:

1. If φ is satisfiable, then there is a hitting set of size n.
2. If there is a hitting set of size (1+ γ)n, for γ > 0, then

SAT (φ) ≥ (1− 3γ).

Proof. The reduction is as follows. The universe of HS con-
sists of all literals xi, xi, where xi is a variable. The family
of sets contains all pairs {xi, xi} (called literal sets), and all
constraints of φ interpreted as sets (called constraint sets).

The first statement of the lemma is immediate. Consider
now a set H of size (1 + γ)n which hits all sets. There are
(1 − γ)n literal sets which are hit once - this defines the
assignment of the corresponding variable. For the γn literal
sets which are hit twice, define the assignment in an arbi-
trary way. For each such variable we “unsatisfy” at most
B′′ constraints, thus a total of γB′′n constraints are unsat-
isfied. Since φ contains exactly B′′/3 · n constraints, the
lemma follows.

The main part of the reduction is encapsulated in the fol-
lowing theorem.

Theorem 5. If, for some a ∈ (0, 1), there is an algorithm
for the (1+ε)-approximate CSS problem, with running time
2O(1/ε2a) · (dn)O(1), then for any (constant) Cb > 1, there
is a Cb-approximation algorithm for the hitting set problem
with the running time 2O(ma logO(1) m).

Proof. We exploit the following nice combinatorial struc-
ture. Consider a code C ⊂ {0, 1}d with codewords
c1 . . . cm, and C ′ ⊂ {0, 1}d with codewords c′1 . . . c′nm (al-
ternatively referred to as c′1,1 . . . c′n,m) with the following
properties parametrized by constants b, b′ > 0, b′′ > 1, as
well as a parameter t > 0:

1. For any T ⊂ [m], |T | = t, R({ci : i ∈ T}) ≤ r.
2. Let t′ = b′′t. Consider any sequence P of t′ pairs

(ci1 , c
′
j1

) . . . (cit′ , c
′
jt′

), such that all of the indexes
i1 . . . it′ and j1 . . . jt′ are pairwise distinct. Then, for
each pair (cik

, c′jk
), take qk to be any d-length sub-

string of cik
◦ c′jk

or c′jk
◦ cik

. We want to have a prop-
erty that R({q1 . . . qt′}) > r′ for r′ = r(1 + ε), where
ε = b′/

√
t for some (tiny) b′ > 0.

For completeness we mention that r = d/2(1 − b/
√

t),
where b ≈

√
2/π. Observe that the Property 2 essentially

states that the code obtained by taking substrings of a prod-
uct of C and C ′ has good list-decodable properties. Ar-
guably, the definition would be more intuitive if we sim-
ply insisted that C has good list-decodable properties. In-
deed, that suffices if our goal is to show hardness for just
the Group Closest String problem, where the goal is to find
a substring that is close to at least one string from each of
n groups of strings. The latter problem strictly generalizes
CSS, since we can define the ith group to contain all sub-
strings of the ith input string. The more complicated def-
inition is a consequence of proving hardness for the more
restrictive CSS problem.

Lemma 9. For any fixed constant b′′ > 1, and variables
m > 1, t > 1, ε > 0, the “nice combinatorial structure”
defined above can be constructed probabilistically with suc-
cess probability at least 2/3, with d = tO(1) log m, and
positive b′ strictly bounded away from 0.

We defer the proof till later. For now, we assume C and
C ′ as above.

The reduction from HS to CSS is as follows. For each
set Ai = A = {a1 . . . al} we generate a string

si = ca1 ◦ c′i,1 . . . cal
◦ c′i,l

The intuition is that the codewords of C represent the input,
while the codeword of C ′ are placeholders, to make sure
that for each string si, the substring of si that is “close”
to the solution string does not overlap with more than one
codeword from C.

We now show that:

• If there is a hitting set H of size t, then there is a solu-
tion to CSS with cost at most r.

• If there is a solution to CSS with cost r′ = r(1 + ε),
then there is a hitting set of size at most b′′t.

The first part is easy. If there is a hitting set
H = {a1 . . . at} of size t, then (by Property 1)
R({ca1 . . . cat}) ≤ r. The corresponding string provides
a solution to CSS with cost at most r.

The second part is as follows. Suppose that we are given
an x and indexes l1 . . . ln such that for each i1 . . . in we
have D(x, si[li . . . li + d − 1]) ≤ r(1 + ε). Denote pi =
si[li . . . li +d− 1]. Note that each pi is a d-length substring
of cji ◦ c′j′i

or c′j′i
◦ cji

, for some cji
∈ C, c′j′i

∈ C ′. Also,
note that all c′j′i

are distinct.
Consider H = {j1 . . . jn}. By construction it is a hitting

set. The question is, how many distinct elements it contains.
Assume it has at least t′ elements a1 . . . at′ . But then we
know, by Property 2 of the “nice combinatorial structure”,
that R({p1 . . . pn}) > r′. Thus, |H| < t′.

Proof of Lemma 9. It suffices to construct the code with the
desired properties. We use the probabilistic method, that is,
for each i = 1 . . .m, j = 1 . . . d, we select ci independently
uniformly at random from {0, 1}d. We do the same for C ′.

Observe that the bits in ST = {ci : i ∈ T} (as in
Property 1), as well as the bits in {q1 . . . qt′} (as in Prop-
erty 2) are independent Bernoulli variables. Our strategy
is therefore to show that the respective properties hold for
t or t′ strings randomly chosen from {0, 1}d, with proba-
bility exp(−Ω(d/tO(1))). This means that, if we set d =
tO(1) log m, then the respective properties will hold for all
required sets of strings with high probability.

Consider c1 . . . ct, chosen independently from {0, 1}d.
First we take care of the high probability bound. Define
Rt = R({c1 . . . ct}), where each ci is chosen independently
and uniformly at random from {0, 1}d.

In the following δ > 0 denotes a (tiny) constant.

Lemma 10. The random variable R = Rt is sharply con-
centrated around its mean. That is, for any δ > 0:

Pr[|R− E[R]| > d/2 · δ/
√

t] ≤ 2 exp
(
−δ2d

8t2

)
Proof. Observe that, for any arguments c1 . . . ct, changing
one coordinate of ci changes the value of R by at most 1.
The bound then follows from Azuma’s inequality, since

Pr[|R−E[R]| > d/2 · δ/
√

t] ≤ 2 exp
(
− (d/2 · δ/

√
t)2

2dt

)

= 2 exp
(
−δ2d

8t2

)

Now we proceed with the upper bound on Rt. Consider
l Bernoulli variables u1 . . . ul, and let u =

∑
i ui. Consider

now the quantity El = E[u|u ≤ l/2]. For concreteness,
we mention that El = l/2(1− (

√
2/π + o(1))/

√
l), which

follows from the value of the influence of a variable in a ma-
jority function [30]. We express the lower and upper bound
for E[R] in terms of Et and Et′ , respectively.

Lemma 11.

Pr[Rt > (Et/t +
δ

2
√

t
) · d] ≤ 2d exp

(
−δ2d

8t2

)
Proof. We construct a vector x such that, with high proba-
bility over the choice of the code, D(x, ci) ≤ (Et/t+ δ

2
√

t
)·

d for each i = 1 . . . d. Our approach is to use the major-
ity vote, that is, to define xi = Majority((c1)i . . . (ct)i),
i = 1 . . . d. By symmetry argument, for any i = 1 . . . d, we
have Pr[(cj)i 6= xi] = Et/t. Thus, E[D(ci, x)] = dEt/t.
Application of Lemma 10 finishes the proof.

Now, we need to show a lower bound for Rt′ . Before we
do that, we mention that a weaker lower bound can be ob-
tained by using Johnson bound for error correcting codes.
Specifically, assume that d is large enough so that the mini-
mum distance of the code Q = {q1 . . . qt′} is ≈ d/2. Then
we can use Johnson bound, as in [16]. It says that:

R(Q) ≥ d/2(1− 1/
√

t′)

Unfortunately, this lower bound is not very tight – the afore-
mentioned upper bound would guarantee about d/2(1 −√

2/π/
√

t′). This discrepancy occurs because the Johnson
bound works for any code with sufficiently large minimum
distance. To circumvent this difficulty, we are going to show
a better Johnson-type bound for a random code

Lemma 12. E[Rt′] ≥ dEt′/t′. Therefore

Pr[Rt′ < (Et′/t′ − δ

2
√

t′
) · d] ≤ 2d exp

(
− δ2d

8t′2

)
Proof. Consider a linear relaxation of the problem of
finding R(Q). Specifically, the linear program finds the
smallest (with respect to the l1 metric) ball enclosing Q,
centered at any point x ∈ [0, 1]d.

minimize r

subject to:
xj + rij ≥ (qi)j for all i = 1 . . . t′, j = 1 . . . d

−xj + rij ≥ −(qi)j

r −
∑

j

rij ≥ 0 for all i = 1 . . . t′

rij , xi, r ≥ 0

To show a lower bound for this program, we consider
the dual LP, with dual variables y+

ij , y
−
ij , yi corresponding

to the respective inequalities in the primal LP.

maximize
∑
i,j

(y+
ij − y−ij)(qi)j

subject to:
y+

ij + y−ij − yi ≤ 0 for all i = 1 . . . t′, j = 1 . . . d∑
i

(y+
ij − y−ij) ≤ 0 for all j = 1 . . . d∑

i

yi ≤ 1

y+
i,j , y

−
ij , yi ≥ 0

We will now demonstrate, for each input qij , a feasible
solution. The expected value of the objective function will
be equal to dEt′/t′.

We set yi = 1/t′, for each i = 1 . . . t′. For each i, j, we
set either y+

ij or y−ij to 0. The other possible value for these
variables is 1/t′.

The specific assignment is as follows. For each j =
1 . . . d, let Mj = {i : (qi)j = 1}. Let mj = min(|Mj |, t′−
|Mj |). For mj indexes i ∈ Mj , we set y+

ij = 1/t. For mj

indexes i /∈ Mj , we set y−ij = 1/t. The remainder variables
are set to 0.

It is easy to see that the resulting solution is feasible.
Moreover, the value of the objective function is at least∑d

j=1 mj/t′. It follows that its expected value is equal to
dEt′/t′.

We now finalize the proof of Lemma 9. By the last three
lemmas, we know that, for large enough d = tO(1) log m,
C and C ′ satisfy the following two conditions with high
probability:

1. C satisfies Property 1 for

r = d(Et/t+
δ

2
√

t
) ≤ d/2

(
1−

√
2/π − o(1)− δ√

t

)
2. C and C ′ satisfy Property 2 for

r′ = d(Et′/t′− δ

2
√

t′
) ≥ d/2

(
1−

√
2/π + o(1) + δ√

t′

)

If b′′ = t′/t > 1, then 1 + ε = r′/r ≥ 1 + b′/
√

t for
some b′ > 0, by taking sufficiently small δ and large enough
t. Lemma 9 follows.

Remark 1. From the above discussion it follows that for
any subset S ⊂ C, |S| = t, we have R1(S) ≤ R(S) ≤
d/2(1 − b/

√
t). At the same time, R1(C) ≥ d/2(1 −

1/
√

m) ≥ d/2(1 − b
2/
√

t) for large enough m. Thus, we
have that R1(S) < R1(C)(1 − ε) as long as t < C/ε2 for
some constant C > 0. Therefore, any core-set for C under
the l1 norm must have size Ω(1/ε2).

References

[1] P. K. Agarwal, S. Har-Peled, and K. R. Varadarajan. Geo-
metric approximation via coresets - survey. Combinatorial
and Computational Geometry (MSRI publication), 52, 2005.

[2] N. Ailon and B. Chazelle. Approximate nearest neighbors
and the fast johnson-lindenstrauss transform. Proceedings
of the Symposium on Theory of Computing, 2006.

[3] N. Alon. Problems and results in extremal combinatorics i.
Discrete Mathematics, 273:31–53, 2003.

[4] N. Alon, Y. Matias, and M. Szegedy. The space complexity
of approximating the frequency moments. Proceedings of
the Symposium on Theory of Computing, pages 20–29, 1996.

[5] O. Barkol and Y. Rabani. Tighter bounds for nearest neigh-
bor search and related problems in the cell probe model.
Proceedings of the Symposium on Theory of Computing,
2000.

[6] A. Borodin, R. Ostrovsky, and Y. Rabani. Lower bounds for
high dimensional nearest neighbor search and related prob-
lems. Proceedings of the Symposium on Theory of Comput-
ing, 1999.

[7] B. Brinkman and M. Charikar. On the impossibility of
dimension reduction in l1. Proceedings of the 44th An-
nual IEEE Symposium on Foundations of Computer Science,
2003.

[8] M. Bădoiu and K. Clarkson. Smaller core-sets for balls. Pro-
ceedings of the ACM-SIAM Symposium on Discrete Algo-
rithms, 2003.

[9] M. Bădoiu, S. Har-Peled, and P. Indyk. Approximate cluster-
ing via core-sets. Proceedings of the Symposium on Theory
of Computing, 2002.

[10] A. Chakrabarti, B. Chazelle, B. Gum, and A. Lvov. A lower
bound on the complexity of approximate nearest-neighbor
searching on the hamming cube. Proceedings of the Sympo-
sium on Theory of Computing, 1999.

[11] A. Chakrabarti and O. Regev. An optimal randomised
cell probe lower bounds for approximate nearest neighbor
searching. Proceedings of the Symposium on Foundations of
Computer Science, 2004.

[12] J. Chen, X. Huang, I. Kanj, and G. Xia. Linear fpt reduc-
tions and computational lower bounds. Proceedings of the
Symposium on Theory of Computing, 2004.

[13] G. Cormode and S. Muthukrishnan. Improved data stream
summaries: The count-min sketch and its applications.
FSTTCS, 2004.

[14] S. Dasgupta. Learning mixtures of gaussians. Proceed-
ings of the Symposium on Foundations of Computer Science,
pages 634–644, 1999.

[15] I. Dinur. The pcp theorem by gap amplification. Proceedings
of the Symposium on Theory of Computing, 2006.

[16] V. Guruswami. List decoding of error-correcting codes.
Ph.D thesis, Massachusetts Institute of Technology, August,
2001.

[17] S. Har-Peled. A replacement for voronoi diagrams of near
linear size. Proceedings of the Symposium on Foundations
of Computer Science, 2001.

[18] P. Indyk. Stable distributions, pseudorandom generators,
embeddings and data stream computation. Proceedings of
the Symposium on Foundations of Computer Science, 2000.

[19] P. Indyk. Tutorial: Algorithmic applications of low-
distortion geometric embeddings. Proceedings of the Sym-
posium on Foundations of Computer Science, 2001.

[20] P. Indyk. Nearest neighbor in high dimensional spaces. CRC
Handbook of Discrete and Computational Geometry, 2nd
edition, 2003.

[21] P. Indyk and R. Motwani. Approximate nearest neighbor:
towards removing the curse of dimensionality. Proceedings
of the Symposium on Theory of Computing, 1998.

[22] P. Indyk and D. Woodruff. Tight lower bounds for the dis-
tinct elements problem. Proceedings of the Symposium on
Foundations of Computer Science, pages 283–290, 2003.

[23] Y. Jiao, J. Xu, and M. Li. On the k-closest substring and k-
consensus pattern problems. Proceedings of the Symposium
on Combinatorial Pattern Matching, pages 130–144, 2004.

[24] W. Johnson and J. Lindenstrauss. Extensions of lipshitz
mapping into hilbert space. Contemporary Mathematics,
26:189–206, 1984.

[25] N. Jones and P. Pevzner. An introduction to Bioinformatics
Algorithms. MIT Press, 2004.

[26] E. Kushilevitz, R. Ostrovsky, and Y. Rabani. Efficient
search for approximate nearest neighbor in high dimensional
spaces. Proceedings of the Thirtieth ACM Symposium on
Theory of Computing, pages 614–623, 1998.

[27] M. Li, B. Ma, and L. Wang. On the closest string and sub-
string problems. Journal of the ACM. Early versions ap-
peared in STOC 99 and CPM 00., 49(2):157–171, 2002.

[28] D. Marx. The closest substring problem with small dis-
tances. Proceedings of the Symposium on Foundations of
Computer Science, 2005.

[29] P. B. Miltersen, N. Nisan, S. Safra, and A. Wigderson.
Data structures and asymmetric communication complexity.
Journal of Computer and System Sciences, 1998.

[30] E. Mossel and R. O’Donnell. On the noise sensitiv-
ity of monotone functions. Random Struct. Algorithms,
23(3):333–350, 2003.

[31] S. Muthukrishnan. Data streams: Algorithms and
applications (invited talk at soda’03). Available at
http://athos.rutgers.edu/∼muthu/stream-1-1.ps, 2003.

[32] R. Ostrovsky and Y. Rabani. Polynomial time approxima-
tion schemes for geometric k-clustering. Proceedings of the
Symposium on Foundations of Computer Science, 2000.

[33] P. Pevzner and S. Sze. Combinatorial approaches to finding
subtle signals in dna sequences. International Conference
on Intelligent Systems for Molecular Biology, 2000.

[34] M. Pǎtraşcu and M. Thorup. Higher lower bounds for near-
neighbor and further rich problems. Proceedings of the Sym-
posium on Foundations of Computer Science, 2006.

[35] D. Woodruff. Optimal space lower bounds for all frequency
moments. Proceedings of the ACM-SIAM Symposium on
Discrete Algorithms, 2004.

A. Upper bounds for clustering problems

A.1. (1 + ε)-approximate closest string in
nO(log(1/ε)/ε2) time

In this section we describe an improved algorithm for the
closest string problem.

In [27], an algorithm with running time of nO(1/ε4) was
given. As we show, it is not difficult to reduce the exponent
to O(1/ε2 · log(1/ε)). Firstly, we need to briefly review the
algorithm of [27].

Let R = R(S). If R > C log n/ε2 for some constant C,
then the problem can be solved as follows:

• Write an integer program optimizing R(S), with vari-
ables xi ∈ {0, 1}, i = 1 . . . d

• Relax it to a linear program, with variables x′i ∈ [0, 1];
this can be solved in polynomial time.

• Use randomized rounding to convert x′is into xi’s.
This works as long as the expectations of D(si, x) are
Ω(log n/ε2), which is the case by our assumption.

So, if R is large, we are done. What if R = O(log n/ε2)
? A simple approach would be to take any s ∈ S, and enu-
merate all x such that D(s, x) ≤ R. This clearly identifies
an optimal solution. The drawback is that this results in
quasi-polynomial time of dO(log n/ε2).

To avoid this problem, the paper [27] proposed the fol-
lowing “dimensionality reduction” idea. For each set P ⊂
S, we define the set I(P) = {i : pi 6= qi, for some p, q ∈
P}; note that I(P) is efficiently computable given P . Let
I ′(P) be the complement of I(P). The idea is to show that
there exists a small set P such that for an optimum solu-
tion x, and I ′ = I ′(P), we have D(x|I′ , s|I′) ≤ εR for
all s ∈ P . This is good news, since now we can create
a solution x′, such that x′|I′ = s|I′ for some s ∈ S, and
x′|I = x|I . By the above, x′ is a (1 + ε)-approximate so-
lution to the problem. To find it, we only need to find x|I .
However, |I| ≤ |P | · 2R = O(|P | log n/ε2). Thus, as long
as |P | is small, we can find x′|I by exhaustive enumeration.

How small can |P | be ? The original paper [27] showed
a bound polynomial in 1/ε. However, Lemma 2.2 of [28]
(more specifically, the statement in the second line of the
proof of that Lemma) gives an upper bound of just log(1/ε).
Therefore, we obtain an algorithm with the running time of
nO(log(1/ε)/ε2).

A.2. Other clustering problems

The papers [14, 32] discovered a method for clustering
in high dimensional spaces using dimensionality reduction.
As it turns out, this method can be generalized so that it
applies to a wide variety of problems, including the closest
substring problem. In fact, the algorithm of [27] can be
viewed as an instantiation of that method.

The general method is as follows. Assume that each
cluster has a center; we denote the centers by c1 . . . ck.

1. Construct a (1 + ε)-approximate mapping A from the
original d-dimensional space <d, to the host space <k.
It suffices that this mapping is correct for the input
points and c1 . . . ck, which can be guaranteed by taking
k = O(log n · 1/ε2).

2. Map (using A) all input points P into <k.

3. Enumerate “all” possible images Ac1 . . . Ack (after a
proper discretization)

4. Infer the “combinatorial structure” of an optimum
clustering from A(P) and Ac1 . . . Ack. In the context
of clustering, for each Ap, p ∈ P , find the nearest point
Aci.

5. Using the above information, solve the problem in <d.
E.g., use the information to partition P into clusters,
and find optimum center in <d for each cluster.

This approach nicely applies to the closest substring
problem. Let Groupd(s) denote the set of all contiguous
d-length substrings of s. We map all d-length substrings
Groupd(si) of the input strings into <k.

In the next step, we enumerate “all” candidates for the
optimal center string s. This is implemented as follows.
First, we “guess” the value C = C(s) of the objective
function at the optimum string s. Then, we guess the
index j which minimizes D(s, s1[j . . . j + d − 1]). Let
s′ = s1[j . . . j + d − 1]. Since D(s, s′) ≤ C, it follows
that ‖s−s′‖2

2 ≤ C, and therefore ‖As−As′‖2
2 ≤ C(1+ε).

We now find a “good enough” approximation to As as
follows. First, we impose an ε

√
C-net N on the l2 norm

ball B(As′,
√

C(1 + ε)). It is possible to construct such
a net so that |N | ≤ (1/ε)O(k) in time polynomial in |N |.
Then, we “guess” p ∈ N that is closest to As. Note that we
have ‖As− p‖2 ≤ ε

√
C.

Now we choose, for each i = 1 . . . n, the index ji such
that the substring s′i = s[ji . . . ji +d−1] minimizes ‖As′i−
p‖2. Observe that ‖As′i − As‖2 ≤ (1 + ε)

√
C. Therefore

we have

‖As′i − p‖2 ≤ ‖As′i −As‖2 + ‖As− p‖2 ≤ (1 + 2ε)
√

C

At the same time, consider any other substring s′ of
s1 . . . sn such that D(s, s′) ≥ (1 + 12ε)C. As before we
get

‖As′−p‖2 ≥ ‖As′−As‖2−ε
√

C ≥ (1−ε)‖s′−s‖2−ε
√

C

≥
√

C(1 + 12ε)(1− ε)− ε
√

C

which for ε small enough is at least
√

C(1 + 5ε)(1− ε)− ε
√

C >
√

C(1 + 2ε)

Therefore, all strings s′i chosen by the algorithms must sat-
isfy D(s′i, s) < (1 + 12ε)C.

It follows that solving a (1 + ε)-approximate closest
string problem for s′1 . . . s′n yields a (1+O(ε))-approximate
solution to the closest substring problem for s1 . . . sn. The
total time needed to enumerate all “guesses” is at most
(1/ε)O(log n/ε2) = nO(log(1/ε)/ε2).

