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Lecture 9 — Fast Dimension Reduction

Instructor: Alex Andoni Scribe: Negev Shekel Nosatzki

1 Johnson-Lindenstrauss Summary

F(JE) = ﬁGk*dZE‘

|F(z)|| = (1 £ €)|lz| with probability > 1 —§

k= O(}2 log %)

Takes time O(k - d) as we need to calculate k*d dense matrix

2 Fast Johnson-Lindenstrauss Transformation Idea and Issues

2.1 Running Time Goal
e O(d+ k) is optimal goal
e We'll show O(dlogd + k3)
2.2 Sampling

To improve the algorithm speed, we can sample s entries from each row. We can define:
o h:[d —{0,1}
e Pr[h(i) = 1]

s
d

And compute:
°z= \/gzgﬂ h(i) - gizi
o E[|z]% = B[S, h(i) - g2?] = |||

While this tactic works when x is dense, x can be sparse which can create large variance.



2.3 Example of sparse x

Consider the case where © = e; — e = even choosing relatively large sample size s = % has high chance
to fail since Pr(h(1) = 1 A h(2) =1] = (5)? = 5.
And since we have k rows the overall chance is % which is too high.

2.4 Spreading x

To solve the above issue we will ”spread-around” x and use sparse G.

3 FJLT construction

Zz=PHD - x

“spreading aroun

Projection: Hadamard Diagonal
sparse matrix (Fast Fourier Transform)

3.1 Spreading x into y - Overview

The idea is to spread x into y, by defining y = HDz. y is in dimension d (like x) and |ly|| = ||z]|.
However, unlike x, we will be able to provide certain guarantees as to the maximum coordinate values,
and therefore we can project y into lower-dimensional z using a sparse matrix P with high probability.

3.2 Definitions

e D = diagonal matrix with random +1 on diagonal
e H = Hadamard Matrix = Fourier Transform

e P = Projection Matrix - similar to previous G but sparse and dimension k' * d, with k' ~ k?



3.3 Why Fourier Transform?

Fourier Transform is non-trivial rotation. A trivial rotation (i.e. random) takes O(d?) to compute, while
FT takes O(dlogd).

H =1

1 _ _
H2l _ - < H2l 1 HQZ 1 >
HQl—l _H2l—1

o1
Where H;; = lL\/E'

Therefore, y; = H;Dx = rx, where rz is a random vector of +--

Vd
Lemma 1. r-x behaves like g -

This needs to be proved (wasn’t proved in class). Also, we need to bound y;.

Lemma 2. Pr[y? < 1. O(log )] >1-6

2
Proof. We will approximate y; ~ g - x ~ [ where 1 is Gaussian = \/% e < § when [ ~ ,/log% O

3.4 Why do we need D?

If x is sparse, then Hz is dense. However 3 dense = s.t. Hz is sparse. D fixes it by randomizing H (HD
is randomization of H) and since there are very few such dense x, randomization fixes that issue.

3.5 y; Dependence - issue?

Clearly, y; are not independent:
e yy = HiDzx
o yo=HoDx
e and so on.

However, since we are only rotating, the norm doesn’t change: ||y| = ||z||!



4 P Projection

4.1 Density of y

As we saw: y? < é - O(log %) with prob. 1 —J; and since y has d coordinates, we get:

1
g) with prob. 1 —dj =

with prob. 1 -4

1
m = maxy? < 7 O(log
1

d
< —. _
<< 0(10g5)

4.2 Projecting to z

Define:
o jel¥]
e zj = y; for random i € [d] — Vi, j; Pr[z; = y;] = &
e Assume w.lo.g ||z|| =1
Claim 3. |z||* = (1 % €)||z||* with prob. 1 — 26
We want to show Z z concentrates.
Define:
22
o tj =14 [0,
o n=E[} 1)
Proof.
zf Lo, 1
=B 2= 1 St ot -1 = g S -

2/

_2 .
Chernoft: Pr[z ti ¢ (1E£e)ul < 2e 3 = 2eimi < § =

,_ 3 mi_ ¢ 1 el
EK'=m-d In —O(log5 = logé)

Since each of Chernoff and m can deviate from bound with prob. ¢, the overall success rate is 1 — 2.

md

O]



5 Time analysis and further reduction

So far we reduced dimension d to k’ with time O(dlogd + k'):

e dlogd — H Dx multiplication

To further reduce dimension from £’ to k = O(}2 log %), we can apply regular (dense) JL on z:

e Final time for d — k dimension reduction: O(dlogd + k- k') = O(dlogd + k?)

k" — Projection

Gz projection takes k' - k time.

5.1 Example
Assume:
o d=1log3n
e5=1
We get:
k= O(l2 logn)
€

1
kK = O( log*n)
€
1
FJL Time : O(log® nloglogn + = log® n)
€

JL Time : O(dk) = O(Ei2 log* n)

Since we assume ¢ is constant = FJL Time < JL Time.

5.2

Optimal time

What can we hope for?

O(d+ k) or O(dlogd + k)
Assume d = logn

JL Time: O(dk) ~ log®n
Optimal Time: O(d + k) ~ logn
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