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1 Johnson-Lindenstrauss Summary

• F (x) = 1√
k
Gk∗dx

• ‖F (x)‖ = (1± ε)‖x‖ with probability ≥ 1− δ

• k = O( 1
ε2

log 1
δ )

• Takes time O(k · d) as we need to calculate k*d dense matrix

2 Fast Johnson-Lindenstrauss Transformation Idea and Issues

2.1 Running Time Goal

• O(d+ k) is optimal goal

• We’ll show O(d log d+ k3)

2.2 Sampling

To improve the algorithm speed, we can sample s entries from each row. We can define:

• h : [d]→ {0, 1}

• Pr[h(i) = 1] = s
d

And compute:

• z =
√

d
s

∑d
i=1 h(i) · gixi

• E[‖z‖2] = d
sE[
∑k

i=1 h(i) · g2i x2i ] = ‖x‖2

While this tactic works when x is dense, x can be sparse which can create large variance.
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2.3 Example of sparse x

Consider the case where x = e1− e2 =⇒ even choosing relatively large sample size s = d
k has high chance

to fail since Pr[h(1) = 1 ∧ h(2) = 1] = ( sd)2 = 1
k2

.

And since we have k rows the overall chance is 1
k which is too high.

2.4 Spreading x

To solve the above issue we will ”spread-around” x and use sparse G.

3 FJLT construction

3.1 Spreading x into y - Overview

The idea is to spread x into y, by defining y = HDx. y is in dimension d (like x) and ‖y‖ = ‖x‖.
However, unlike x, we will be able to provide certain guarantees as to the maximum coordinate values,

and therefore we can project y into lower-dimensional z using a sparse matrix P with high probability.

3.2 Definitions

• D = diagonal matrix with random ±1 on diagonal

• H = Hadamard Matrix = Fourier Transform

• P = Projection Matrix - similar to previous G but sparse and dimension k′ ∗ d, with k′ ≈ k2
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3.3 Why Fourier Transform?

Fourier Transform is non-trivial rotation. A trivial rotation (i.e. random) takes O(d2) to compute, while

FT takes O(d log d).

H1 = 1

H2l =
1√
2

(
H2l−1 H2l−1

H2l−1 −H2l−1

)

Hd∗d =



H1

H2

...

Hi

...

Hd


Where Hij = ± 1√

d
.

Therefore, yi = HiDx = rx, where rx is a random vector of ± 1√
d

Lemma 1. r · x behaves like g · x

This needs to be proved (wasn’t proved in class). Also, we need to bound yi.

Lemma 2. Pr[y2i ≤ 1
d ·O(log 1

δ )] ≥ 1− δ

Proof. We will approximate yi ≈ g · x ∼ l where l is Gaussian =⇒ 1√
2π
· e
−l2
2 < δ when l ≈

√
log 1

δ

3.4 Why do we need D?

If x is sparse, then Hx is dense. However ∃ dense x s.t. Hx is sparse. D fixes it by randomizing H (HD

is randomization of H) and since there are very few such dense x, randomization fixes that issue.

3.5 yi Dependence - issue?

Clearly, yi are not independent:

• y1 = H1Dx

• y2 = H2Dx

• and so on.

However, since we are only rotating, the norm doesn’t change: ‖y‖ = ‖x‖!
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4 P Projection

4.1 Density of y

As we saw: y2i ≤ 1
d ·O(log 1

δ ) with prob. 1− δ; and since y has d coordinates, we get:

m = max y2i ≤
1

d
·O(log

1

δ
) with prob. 1− dδ =⇒ (1)

m ≤ 1

d
·O(log

d

δ
) with prob. 1− δ (2)

4.2 Projecting to z

Define:

• j ∈ [k′]

• zj = yi for random i ∈ [d]→ ∀i, j; Pr[zj = yi] = 1
d

• Assume w.l.o.g ‖x‖ = 1

Claim 3. ‖z‖2 = (1± ε)‖x‖2 with prob. 1− 2δ

We want to show
∑

j z
2
j concentrates.

Define:

• tj =
z2j
m ∈ [0, 1]

• µ = E[
∑k′

j=1 tj ]

Proof.

µ = E[
∑
j

z2j
m

] =
1

m

∑
j

[
1

d
y21 +

1

d
y21 + ...] =

1

md

∑
j

‖y‖ =
k′

md
=⇒ (3)

Chernoff: Pr[
∑
j

tj /∈ (1± ε)µ] ≤ 2e
−ε2µ

3 = 2e
ε2k′
3md < δ =⇒ (4)

k′ = m · d · 3

ε2
· ln 2

δ
= O(log

d

δ
· 1

e2
· log

1

δ
) (5)

Since each of Chernoff and m can deviate from bound with prob. δ, the overall success rate is 1− 2δ.
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5 Time analysis and further reduction

So far we reduced dimension d to k’ with time O(d log d+ k′):

• d log d→ HDx multiplication

• k′ → Projection

To further reduce dimension from k′ to k = O( 1
ε2

log 1
δ ), we can apply regular (dense) JL on z:

• Gz projection takes k′ · k time.

• Final time for d→ k dimension reduction: O(d log d+ k · k′) = O(d log d+ k3)

5.1 Example

Assume:

• d = log3 n

• δ = 1
n2

We get:

k = O(
1

ε2
log n) (6)

k′ = O(
1

ε2
log2 n) (7)

FJL Time : O(log3 n log logn+
1

ε4
log3 n) (8)

JL Time : O(dk) = O(
1

ε2
log4 n) (9)

Since we assume ε is constant ⇒ FJL Time � JL Time.

5.2 Optimal time

What can we hope for?

• O(d+ k) or O(d log d+ k)

• Assume d = log n

• JL Time: O(dk) ≈ log2 n

• Optimal Time: O(d+ k) ≈ log n
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