COMS E6998-9: Algorithmic Techniques for Massive Data

Oct 6, 2015

Lecture 9 – Fast Dimension Reduction

Instructor: Alex Andoni Scribe: Negev Shekel Nosatzki

1 Johnson-Lindenstrauss Summary

- $F(x) = \frac{1}{\sqrt{k}}G_{k*d}x$
- $||F(x)|| = (1 \pm \epsilon)||x||$ with probability $\geq 1 \delta$
- $k = O(\frac{1}{\epsilon^2} \log \frac{1}{\delta})$
- Takes time $O(k \cdot d)$ as we need to calculate k*d dense matrix

2 Fast Johnson-Lindenstrauss Transformation Idea and Issues

2.1 Running Time Goal

- O(d+k) is optimal goal
- We'll show $O(d \log d + k^3)$

2.2 Sampling

To improve the algorithm speed, we can sample s entries from each row. We can define:

- $h:[d] \rightarrow \{0,1\}$
- $\Pr[h(i) = 1] = \frac{s}{d}$

And compute:

- $z = \sqrt{\frac{d}{s}} \sum_{i=1}^{d} h(i) \cdot g_i x_i$
- $\mathbb{E}[\|z\|^2] = \frac{d}{s}\mathbb{E}[\sum_{i=1}^k h(i) \cdot g_i^2 x_i^2] = \|x\|^2$

While this tactic works when x is dense, x can be sparse which can create large variance.

2.3 Example of sparse x

Consider the case where $x = e_1 - e_2 \Longrightarrow$ even choosing relatively large sample size $s = \frac{d}{k}$ has high chance to fail since $\Pr[h(1) = 1 \land h(2) = 1] = (\frac{s}{d})^2 = \frac{1}{k^2}$. And since we have k rows the overall chance is $\frac{1}{k}$ which is too high.

2.4 Spreading x

To solve the above issue we will "spread-around" x and use sparse G.

3 FJLT construction

3.1 Spreading x into y - Overview

The idea is to spread x into y, by defining y = HDx. y is in dimension d (like x) and ||y|| = ||x||. However, unlike x, we will be able to provide certain guarantees as to the maximum coordinate values, and therefore we can project y into lower-dimensional z using a sparse matrix P with high probability.

3.2 Definitions

- D = diagonal matrix with random ± 1 on diagonal
- H = Hadamard Matrix = Fourier Transform
- P = Projection Matrix similar to previous G but sparse and dimension k'*d, with $k'\approx k^2$

3.3 Why Fourier Transform?

Fourier Transform is non-trivial rotation. A trivial rotation (i.e. random) takes $O(d^2)$ to compute, while FT takes $O(d \log d)$.

$$H_{1} = 1$$

$$H_{2^{l}} = \frac{1}{\sqrt{2}} \begin{pmatrix} H_{2^{l-1}} & H_{2^{l-1}} \\ H_{2^{l-1}} & -H_{2^{l-1}} \end{pmatrix}$$

$$H_{d*d} = \begin{pmatrix} H_{1} \\ H_{2} \\ \dots \\ H_{i} \\ \dots \\ H_{d} \end{pmatrix}$$

Where $H_{ij} = \pm \frac{1}{\sqrt{d}}$.

Therefore, $y_i = H_i Dx = rx$, where rx is a random vector of $\pm \frac{1}{\sqrt{d}}$

Lemma 1. $r \cdot x$ behaves like $g \cdot x$

This needs to be proved (wasn't proved in class). Also, we need to bound y_i .

Lemma 2. $\Pr[y_i^2 \leq \frac{1}{d} \cdot O(\log \frac{1}{\delta})] \geq 1 - \delta$

Proof. We will approximate $y_i \approx g \cdot x \sim l$ where l is Gaussian $\Longrightarrow \frac{1}{\sqrt{2\pi}} \cdot e^{\frac{-l^2}{2}} < \delta$ when $l \approx \sqrt{\log \frac{1}{\delta}}$

3.4 Why do we need D?

If x is sparse, then Hx is dense. However \exists dense x s.t. Hx is sparse. D fixes it by randomizing H (HD is randomization of H) and since there are very few such dense x, randomization fixes that issue.

3.5 y_i Dependence - issue?

Clearly, y_i are not independent:

- $\bullet \ y_1 = H_1 Dx$
- $\bullet \ y_2 = H_2 Dx$
- and so on.

However, since we are only rotating, the norm doesn't change: ||y|| = ||x||!

4 P Projection

4.1 Density of y

As we saw: $y_i^2 \leq \frac{1}{d} \cdot O(\log \frac{1}{\delta})$ with prob. $1 - \delta$; and since y has d coordinates, we get:

$$m = \max y_i^2 \le \frac{1}{d} \cdot O(\log \frac{1}{\delta})$$
 with prob. $1 - d\delta \Longrightarrow$ (1)

$$m \le \frac{1}{d} \cdot O(\log \frac{d}{\delta})$$
 with prob. $1 - \delta$ (2)

4.2 Projecting to z

Define:

- $j \in [k']$
- $z_j = y_i$ for random $i \in [d] \rightarrow \forall i, j; \Pr[z_j = y_i] = \frac{1}{d}$
- Assume w.l.o.g ||x|| = 1

Claim 3. $||z||^2 = (1 \pm \epsilon)||x||^2$ with prob. $1 - 2\delta$

We want to show $\sum_{j} z_{j}^{2}$ concentrates.

Define:

- $t_j = \frac{z_j^2}{m} \in [0, 1]$
- $\mu = \mathbb{E}[\sum_{j=1}^{k'} t_j]$

Proof.

$$\mu = \mathbb{E}\left[\sum_{j} \frac{z_{j}^{2}}{m}\right] = \frac{1}{m} \sum_{j} \left[\frac{1}{d}y_{1}^{2} + \frac{1}{d}y_{1}^{2} + \ldots\right] = \frac{1}{md} \sum_{j} \|y\| = \frac{k'}{md} \Longrightarrow$$
 (3)

Chernoff:
$$\Pr\left[\sum_{j} t_{j} \notin (1 \pm \epsilon)\mu\right] \le 2e^{\frac{-\epsilon^{2}\mu}{3}} = 2e^{\frac{\epsilon^{2}k'}{3md}} < \delta \Longrightarrow$$
 (4)

$$k' = m \cdot d \cdot \frac{3}{\epsilon^2} \cdot \ln \frac{2}{\delta} = O(\log \frac{d}{\delta} \cdot \frac{1}{\epsilon^2} \cdot \log \frac{1}{\delta})$$
 (5)

Since each of Chernoff and m can deviate from bound with prob. δ , the overall success rate is $1-2\delta$. \square

5 Time analysis and further reduction

So far we reduced dimension d to k' with time $O(d \log d + k')$:

- $d \log d \to HDx$ multiplication
- $k' \to \text{Projection}$

To further reduce dimension from k' to $k = O(\frac{1}{\epsilon^2} \log \frac{1}{\delta})$, we can apply regular (dense) JL on z:

- Gz projection takes $k' \cdot k$ time.
- Final time for $d \to k$ dimension reduction: $O(d \log d + k \cdot k') = O(d \log d + k^3)$

5.1 Example

Assume:

- $d = \log^3 n$
- $\delta = \frac{1}{n^2}$

We get:

$$k = O(\frac{1}{\epsilon^2} \log n) \tag{6}$$

$$k' = O(\frac{1}{\epsilon^2} \log^2 n) \tag{7}$$

FJL Time:
$$O(\log^3 n \log \log n + \frac{1}{\epsilon^4} \log^3 n)$$
 (8)

JL Time:
$$O(dk) = O(\frac{1}{\epsilon^2} \log^4 n)$$
 (9)

Since we assume ϵ is constant \Rightarrow FJL Time \ll JL Time.

5.2 Optimal time

What can we hope for?

- O(d+k) or $O(d\log d + k)$
- Assume $d = \log n$
- JL Time: $O(dk) \approx \log^2 n$
- Optimal Time: $O(d+k) \approx \log n$