
COMS E6998-9: Algorithmic Techniques for Massive Data Nov 12, 2015

Lecture 19 – Sublinear algorithms for graphs

Instructor: Alex Andoni Scribes: Parthiban Loganathan

1 MST Cost in Bounding Degree

The model we will consider is a graph G with n vertices and total degree d =
∑n

i=1 di where di are the

degrees of vertex vi. We represent it with an adjacency list where each vertex points to a list of vertices

and weights of the edges. Let the edge weights ∈ [M].

We assume the graph is connected. This means the MST is well-defined and Cost of the MST ≥ n− 1.

Theorem 1. We can estimate MST up to a 1+ε factor in O(M4d/ε3) queries.

For example, if M = 2, we first look at the connected components of cost 1. If we have C1 connected

components,

MST = n− 1︸ ︷︷ ︸
connecting all vertices

+ C1 − 1︸ ︷︷ ︸
connecting connected components

Fact 2. Let Ci be the number of connected components on graph on edges of weight ≤ i. Then,

MST = n− 1 +
∑M

i=1Ci − 1

To estimate the MST cost, we need to estimate each Ci up to δn for δ = ε/M . Note the Ci are independent.

Lemma 3 (Connected Components (CC) Lemma). For any i ∈ [M], we can design an estimator Ĉi such

that:

(1) |Ci −E[Ĉi]| ≤ δn

(2) var(Ĉi) ≤ O(δ2n(Ci + δn))

(3) Number of queries ≤ O(M3d/ε3)

MST Algorithm

(1) For i = 1...M − 1, estimate Ĉi

(2) Then ˆMST = n− 1 +
∑M

i=1 Ĉi − 1

Now let us prove the above theorem.

Proof.

1

(1)

|E[ˆMST]−MST | ≤
n∑
i=1

|Ci −E[Ĉi]|

≤ δnM

=
(ε
M

)
nM (since δ = ε/M)

= εn

(2)

var(ˆMST) ≤
M−1∑
i=1

var(Ĉi)

≤ O(δ2n
(M∑
i=1

Ci + δn
)
)

≤ O(δ2n(nM))

= O(ε2n2)

Finally apply Chebhyshev’s Inequality to obtain a bound with constant probability.

Proof. CC Lemma Proof:

Input is a graph H (= G on edges with cost ≤ i). Output is C = Ci = number of connected components

in H. Our goal is to obtain an estimator Ĉ ≈ C.

Define vertex v such that αv = 1
size of CC of v

We sample v in order to estimate αv. To compute αv, we need to find size of CC of v which may be the

entire graph making the algorithm linear. So instead, we estimate αv by thresholding it.

α̂v = max{αv, δ}

|
∑

v α̂v −
∑

v αv| ≤ δn

Algorithm to compute each Ĉi

(1) For i = 1...k where k = 1/δ2 pick random vi

(2) Compute α̂vi via Breadth First Search stopping after we see 1/δ vertices

(3) Ĉ = n
k

∑k
i=1 α̂vi

2

(1)

E[Ĉ] =
n

k

k∑
i=1

E[α̂vi]

=
n∑
i=1

α̂vi

(2)

var(Ĉ) =
n

k

n∑
i=1

α̂vi

=
n

k

n∑
i=1

α̂vi

=
n

k
(C︸︷︷︸∑

αv

+ δn︸︷︷︸
max difference between

∑
αv and

∑
α̂v

)

=
n

k
(C + δn)

(3) Number of queries ≤ k × depth× d = 1
δ2

1
δd = dM3/ε3

The best known bound is O(dMε−3 log dM
ε) [Chazelle-Rubinfeld-Trevisen].

2 Estimating Average Degree

Problem statement:

(1) m = nd̄ where d̄ is the average degree

(2) Degrees are unbounded

(3) d̄ ≥ 1 (ie. at least n edges in G)

The trivial solution uses O(n) queries by simply iterating over all vertices and computing the sum of

degrees in order to find the average. To do better, we will attempt to sample some subset of vertices in

order to estimate d̄.

First, we see that we can’t compute d̄ with constant number of queries. For example, consider a case

where we do not sample a very ”heavy” vertex with high degree that contributes a lot to d̄. Or consider

the case where we have
√
n connected vertices and n −

√
n unconnected ones. The query complexity is

Ω(
√
n).

3

Theorem 4. We can estimate average degree d̄ up to a 1 + ε factor in O(
√
n/ε2) queries.

Algorithm to compute d̄

(1) Sample edges e1, ..., ek iid from distribution {pe}

(2) Estimator d̂ = 1
k

∑ 1
npe

We sample {pe} as follows:

(1) Sample random vertex u and then sample a random neighbor v along edge e = (u, v).

(2) Estimator d̂ = 1
k

∑ 1
npe

Let u and v have degree du and dv respectively. Probability of sampling a vertex u is 1/n. Probability of

then sampling a neighbor is 1/du. Hence pe = 1
ndu

+ 1
ndv

.

pe =
1

ndu
+

1

ndv

≥ 1

n
max{1/du, 1/dv}

=⇒ 1

pe
≤ nmin{du, dv}

Need to show:

(1) E[d̂] = d̄

(2) var(d̂) = 1
kvar(1

npe
)

var
(1

npe

)
≤ E

[(1

npe

)2]
=

1

n2

∑
e

pe
p2
e

=
1

n2

∑
e

1

pe

≤ 1

n2
n
∑

e=(u,v)

min{du, dv}

Attempt 1: This does not work.

4

var
(1

npe

)
≤ 1

n

∑
e=(u,v)

min{du, dv}

≤ 1

n

∑
u

d2
u

≤ 1

n

(m
n
n2
)

(in the case where each vertex has degree m)

= m

var(d̂) = 1
kvar(1

npe
) = m

k

=⇒ d̂ = d̄±
√

m
k

We want var(d̂) ≤ εd̄

√
m

k
≤ εd̄

=⇒ k ≥ nd̄

ε2d̄2

=
1

ε2

n

d̄

If d̄ = 10 for example, k ≈ n and it’s linear. Hence this attempt fails.

Attempt 2: There are at most m/M vertices with degree ≥M . Let us call them heavy nodes.

5

var
(1

npe

)
≤ 1

n

∑
e=(u,v)

min{du, dv}

=
1

n

∑
u

∑
v

min{du, dv}

=
1

n

∑
u

∑
v

either u or v not heavy

M +
1

n

∑
u

∑
v

v is heavy

du

≤ 1

n
mM +

1

n

∑
u

du
m

M

≤ m

n
(M +

m

M
)

≤ m

n

√
m

If degree was constant m = n, var
(

1
npe

)
≤
√
m.

In general, d̂ = d̄±
√

m3/2

nk = d̄± εd̄ for k = n√
mε2

.

6

