
COMS E6998-9: Algorithmic Techniques for Massive Data Oct 22, 2015

Lecture 11 – Applications of Dimension Reduction

Instructor: Alex Andoni Scribes: Marshall Ball

Today we looked at two applications of dimension reduction for improving the time complexity of two

classical problems in P:

(a) Matrix Multiplication.

(b) Least Square Regression

As usual, we will make our lives easier by considering approximate variants (of the optimization

versions) of the above problems.

1 Matrix Multiplicaiton

Definition 1. (Exact) Matrix Multiplication is the following problem:

• Given A,B ∈ Rn×d,

• Compute: C = A>B ∈ Rd×d.

In general, you may consider the problem for arbitrary fields K, but we will restrict our attention to

R. (One may also consider matrices of arbitrary dimension.)

Naively, we can solve the above problem in time O(nd2). The state of the art for n × n matrices is

time O(nω) for ω ≈ 2.36 This will yield an algorithm for our problem with complexity O(d2nω−2).

However as usual, we are interested in a near linear time, ∼ O(nd), algorithm. To do this exactly is

hard, so we will relax the problem to an approximate version.

First, we define the following norm to characterize our approximation guarrantee;

Definition 2. For a matrix Z ∈ Rm×n, the (squared) frobenius norm is defined as follows:

‖Z‖2F :=
∑
i,j

Z2
i,j .

Definition 3. (Approximate) Matrix Multiplication is the following problem:

• Given A,B ∈ Rn×d,

• Compute: C ′ ∈ Rd such that the following holds with high probility,

‖C ′ −A>B‖F ≤ ε‖A‖F × ‖B‖F .

1

Some notation for what follows:

A =

 x>1
...

x>n

 B =

 y>1
...

y>n


1.1 A First Algorithm: Sampling via a Horovitz-Thompson Estimator

We begin by noting the following:

Claim 1. A>B =
∑n

k=1 xky
>
k (xy> is the “outer-product” of vectors x and y).

Proof.

Cij =

(
n∑

k=1

xky
t
k

)
ij

=
n∑

k=1

xkiykj .

From this, we derive the following algorithm (we will fix parameters in the analysis):

• Sample m coordinates kt from [n] (2m vectors: xkt , ykt , t ∈ [m]) where the probability of sampling

coordinate k is pk ∝ ‖x‖k‖y‖k.

• Then simply output,

C ′ =
m∑
t=1

xktykt
pkt

.

Theorem 2.

Pr
[
‖C ′ − C‖F > ε‖A‖F ‖B‖F

]
<

1

ε2m
.

Notice that this means we can take m = Ω(1/ε2).

Proof. • Expectation

E[C ′] =
1

m
E

[
m∑
t=1

xkty
>
kt

pkt

]

=
1

m

m∑
t=1

n∑
k=1

pkxky
>
k

pk

=

n∑
k=1

xky
>
k = C.

• Variance

2

V = E
[
‖C ′ − C‖2F

]
= E

∑
i,j

(C ′ij − Cij)
2


=
∑
i,j

Var[C ′ij]

≤
∑
i,j

Var

 1
m

m∑
t=1

xktiyktj
pkt︸ ︷︷ ︸

id. dist. var.


=
∑
i,j

1
mVar

[
xkiykj
pk

]
(randomness over k)

≤ 1
m

∑
i,j

E

[(
xkiykj
pk

)2
]

= 1
m

∑
i,j

n∑
k=1

pk

(
xkiykj
pk

)2

= 1
m

n∑
k=1

1

pk

∑
i,j

x2kiy
2
kj

= 1
m

n∑
k=1

1

pk
‖xk‖2F ‖yk‖2F

So, take

pk :=
‖xk‖F ‖yk‖F∑n
i=1 ‖xi‖F ‖yi‖F

.

Then (via Cauchy-Schwartz),

V ≤
(
∑n

k=1 ‖xk‖F ‖yk‖F)2

m
≤
(∑n

k=1 ‖xk‖2F
) (∑n

k=1 ‖yk‖2F
)

m
=
‖A‖2F ‖B‖2F

m

• So applying Chebyshev to the above,

Pr
[
‖C ′ − C‖2F > ε2‖A‖2F ‖B‖2F

]
≤ E [‖C ′ − C‖F]

ε2‖A‖2F ‖B‖2F
≤ 1

mε2

1.2 A Second Algorithm: Using Dimension Reduction

Note 1. We can view the above algorithm as the following:

3

• Choose a random Π ∈ Rm×n where

Πi,j :=

{
1√
mpk

if (i, j) = (t, kt)

0 otherwise

• Compute:

C ′ = (ΠA)>(ΠB).

Observe that the above algorithm requires two passes over the data, one to sample Π (compute the

pk’s) and one to compute the “reduced” matrix product (or the sum in our previous formulation).

Given this “randomized-projection/embedding” formulation of our approximation algorithm, it seems

an appropriate place to invoke the magic of Johnson-Lindenstrauss. Consider the following definition:

Definition 4. Π ∈ Rm×n is an (ε, δ)-dimension reducing matrix, (ε, δ)-DR, if

∀x ∈ Rn,Pr
[
|‖Πx‖22 − ‖x‖22| > ε‖x‖22

]
≤ δ.

Given some (ε, δ)-DR matrix Π, our algorithm is to simply compute:

C ′ = (ΠA)> (ΠB) .

Theorem 3. Π is (ε, δ)-DR =⇒ Pr [‖C ′ − C‖F > 3ε‖A‖F ‖B‖F] ≤ 3d2δ.

Remark 1. With a more precise version of the Johnson-Lindenstrauss lemma we can remove the d2 factor

from the above.

Corollary 4. If we choose m = O(1/ε2 log(1/δ)), δ = 1
10d2

, then (naively) we can compute C ′ in time

O(mnd) +O(dmd) = O(nd+d2

ε2
log d).

By the above remark, the log d factor is simply an artifact of our analysis.

To prove the theorem, we will show C ′ij ≈ Cij with probability ≥ 1− 3δ and then take a union bound

(hence the d2).

Proof. First some notation:

A =
[
A1 · · · Ad

]
B =

[
B1 · · · Bd

]
ai :=

Ai

‖Ai‖2
bi :=

Bi

‖Bi‖2
Note:

• Cij = A>i Bj = ‖Ai‖‖Bj‖a>i bj .

4

• With probability ≥ 1− 3δ,

C ′ij = (ΠAi)
> (ΠBj) = ‖Ai‖‖Bj‖(Πai)>(Πbj)

= ‖Ai‖‖Bj‖
[
‖Πai‖2 + ‖Πbj‖2 − 1

2‖Πai −ΠbJ‖2
]

= ‖Ai‖‖Bj‖
[
‖ai‖2 + ‖bj‖2 − ‖ai − bj‖2 ± 3ε

]
(Π is (ε, δ)−DR)

= ‖Ai‖‖Bj‖ [aibj ± 3ε]

So with probability ≥ 1 − 3δ, (C ′ij − Cij)
2 ≤ ‖Ai‖22‖Bj‖22(3ε)2. This implies (via union bound) that

with probability ≥ 1− 3δd2,

‖C ′ − C‖F ≤
∑
ij

9ε2‖Ai‖2‖Bj‖2 = 9ε2‖A‖2F ‖B‖2F .

2 Least Squares Regression

Definition 5. (Exact) Least Squares Regression is the following problem:

• Given A ∈ Rn×d, b ∈ Rn,

• find x∗ = argminx∈Rd ‖Ax− b‖2.

We can consider least squares regression as a simple learning problem where the i-th row of A, a(i),

is labeled with bi according to some approximately linear function.

Definition 6. A function f : Rd → R is linear if

∃y ∈ Rd : f(x) = 〈x, y〉.

If ∃x : Ax = b then the problem is easy. In general, we are only assume ∃x : Ax ≈ b.
In general, we can do least squares regression via Singular Value Decomposition (in time Õ(ndω−1)),

but perhaps we can speed things up by loosening the approximation.

Definition 7. (Approximate) Least Squares Regression is the following problem:

• Given A ∈ Rn×d, b ∈ Rn,

• Let x∗ = argminx∈Rd ‖Ax− b‖2. Find x ∈ Rd such that

‖Ax− b‖2 ≤ (1 + ε)‖Ax∗ − b‖2.

To solve this problem we will use dimension reduction, as promised.

First, we define a special kind of dimension reducing matrix:

Definition 8. Π ∈ Rm×n is a (d, ε, δ)-subspace embedding, (d, ε, δ)-SE, if ∀P ⊂ Rn such that P is a

d-dimensional subspace,

Pr[∀p ∈ P : |‖Πp‖ − ‖p‖| ≤ ε‖p‖] ≥ 1− δ.

5

Then given some such SE Π, our alorithm is simply: find argminx ‖ΠAx−Πb‖ (via SVD).

Naively, the time to reduce dimension is O(mnd). The time to perform SVD on the result is O(mdω−1.

So if we take m = O(d/ε2), then the resulting algorithm has time complexity

O(
nd2

ε
+mdω−1).

If we use a faster version of Johnson-Lindenstrauss, we can acheive Oε

(
(n log n+m3)d

)
time com-

plexity.

Unfortunately, at this point we ran out of time. We will finish up this application of dimension

reduction next lecture.

6

