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1 Time-space Trade-offs

Below we present a table of LSH algorithms using different space and time.
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Type Space Time Comment Ref
Low space and ~n n? o=2.09/c | [Ind’01,Pan’06]
High query time ~n n’ o =0(1/c?) | [AT'06]
Medium space and | n!*? n? p=1/c [IM’98, DITM’04]
Medium query time | n!*? ne p=1/c [AT°06]
nlte nP p>1/c? [MNP’06,0WZ'11]
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2 Near-linear Space for {0,1}¢

[Indyk’01,Panlgrahy’06]

e General idea: Sample a few bucket in the same hash table.

e Setting:
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e Algorithm:
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— On query q:
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Compute w = g(p) € {0, 1}*
Define w’ such that starting from w, flip each w; with probability 1 — P
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Lookup bucket g(w') and compute distance to all points there

Repeat R = n? times, stop if found an approximate near neighbor
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Theorem. For o = ©(——), we have

e Pr[find an approximate near neighbor/> 0.1
e Ezpected runtime: O(n?)

Proof. Let p* be the near neighbor, then we know that ||¢ — p*|| < r. Define w = g(q),t = ||w — g(p*)]|1.
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Since if w’ = g(p*) for at least one w’, we are guaranteed to output either p* or an approximate near
neighbor, we are done by Claim 3. O



3 Beyond LSH
Below we give a contrast of LSH algorithms and other algorithm.

In Hamming Space

Type Space | Time | Comment | ¢ =2 Reference
LSH nltr | nP p=1/c p=1/2 | [IM9§]
p>1/c [MNP’06,0WZ’11]

Non-LSH | n'*? | n? p~ 527 | p=1/3 | [AINR'14,AR'15]

In Euclidean Space

Type Space | Time | Comment | ¢ =2 Reference
LSH nltr | nP p~1/ct | p=1/4 | [AT'06]
p>1/c? [MNP’06,0WZ’11]

Non-LSH | n'*? | n? PR

52— | p=1/7 | [AINR’14,AR'15]

4 Data-dependent hashing

[A.-Indyk-Nguyen-Razenshteyn’14,A.-Razenshteyn’15]

General idea: Using a random has function, which is chosen after seeing the given dataset
e Feature: Efficiently computable

e Components:

— Nice geometric structure (has better data partition)

— Reduction to such structure (depends on the data)

e Nice geometric structure:

— Like a random dataset on a sphere s.t. random points at distance = cr

— Query: At angle 45’ from near-neighbor

Alg 1: Hyperplanes[Charikar’02]
— We sample unit r uniformly, hash p into sgn < r,p >,
Pr[h(p) = h(q)] = 1 — a/w, where « is the angle between p and ¢
— P =3/4,P=1/2
— p~ 042

e Alg 2: Voronoi[A.-Indyk-Nguyen-Razenshteyn’14] based on [Karger-Motwani-Sudan’94]

— Sample T i.i.d. standard d-dimensional Gaussians ¢, g2, .., g7-
— Hash p into h(p) = argmazi<i<t < p, gi >
— Note that it is simply Hyperplane LSH when T = 2



e Hyperplane VS Voronoi

— Hyperplane with k& = 6 hyperplanes , which means we partition space into 26 = 64 pieces

— Voronoi with 7' = 2¥ = 64 vectors. p = 0.18

K=6vs.T=64
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— In Hyperplane algorithm we partition into grids while in Voronoi we partition into sphere

Nearest Neighbor Search: Conclusion
e Approach 1: Via sketches

e Approach 2: Locality Sensitive Hashing

— Use Random Space Partitions
— Algorithm with Better Space Bound
— Use Data-dependent hashing



