
COMS E6998-9: Algorithmic Techniques for Massive Data Oct 15, 2015

Lecture 12 – More LSH, Data-Dependent Hashing

Instructor: Alex Andoni Scribes: Mingxian Zhong

1 Time-space Trade-offs

Below we present a table of LSH algorithms using different space and time.

Type Space Time Comment Ref

Low space and ≈ n nσ σ = 2.09/c [Ind’01,Pan’06]

High query time ≈ n nσ σ = O(1/c2) [AI’06]

Medium space and n1+ρ nρ ρ = 1/c [IM’98,DIIM’04]

Medium query time n1+ρ nρ ρ = 1/c2 [AI’06]

n1+ρ nρ ρ ≥ 1/c2 [MNP’06,OWZ’11]

n1+o(1+1/c2) ω(1) memory lookup [PTW’08,PTW’10]

High space and n4/ε
2

O(dlogn)(1 mem lookup) c = 1 + ε [KOR’98,IM’08,Pan’06]

Low query time no(1/ε
2) ω(1) memory lookup [AIP’06]

2 Near-linear Space for {0, 1}d

[Indyk’01,PanIgrahy’06]

• General idea: Sample a few bucket in the same hash table.

• Setting:

– Close: r =
d

2c
[Note that from last lecture P1 = 1− r

d
= 1− 1

2c
]

– Far: cr =
d

2
[Note that from last lecture P2 = 1− cr

d
=

1

2
]

• Algorithm:

– Use on hash table with k =
log n

log 1/P2
= α lnn

[Note that since P2 = 1/2 here α is a constant]

– On query q:

∗ Compute w = g(p) ∈ {0, 1}k

∗ Define w′ such that starting from w, flip each wj with probability 1− P1

∗ Lookup bucket g(w′) and compute distance to all points there

∗ Repeat R = nσ times, stop if found an approximate near neighbor

1



Theorem. For σ = Θ(
log c

c
), we have

• Pr[find an approximate near neighbor]≥ 0.1

• Expected runtime: O(nσ)

Proof. Let p∗ be the near neighbor, then we know that ‖q − p∗‖ ≤ r. Define w = g(q), t = ‖w − g(p∗)‖1.

Claim 1. Pr[t ≤ k

c
] ≥ 1

2

Proof. Note that E[t] =
r

d
k =

k

2c
.

Hence by Markov Inequality, Pr[t ≤ k

c
] ≥ 1− k

2c
/
k

c
=

1

2

Claim 2. Pr[w′ = g(p)|‖q − p‖1 ≥
d

2
] ≤ 1

n

Proof.

Pr[Collision] ≤ (P1P2 + (1− P1)(1− P2))
k

= (P2(P1 + 1− 1) + (1− P1)(1− P2))
k

= (P2 + (1− P1)(1− 2P2))
k

≤ P k2 = 1/n

Claim 3. Pr[w′ = g(p∗)|Claim 1] ≥ n−σ

Proof.

Pr[w′ = g(p∗)|Claim 1] = (1− P1)
tP k−t1

≥ (1− (1− 1

2c
))k/c(1− 1

2c
)k(1−1/c)

≥ (
1

2c
)

k

c e
−

1

2c
k

≥ n
−

Θ(1) lg c

c n
−
α

2c

≥ n−σ

Since if w′ = g(p∗) for at least one w′, we are guaranteed to output either p∗ or an approximate near

neighbor, we are done by Claim 3.

2



3 Beyond LSH

Below we give a contrast of LSH algorithms and other algorithm.

In Hamming Space
Type Space Time Comment c = 2 Reference

LSH n1+ρ nρ ρ = 1/c ρ = 1/2 [IM’98]

ρ ≥ 1/c [MNP’06,OWZ’11]

Non-LSH n1+ρ nρ ρ ≈ 1
2c−1 ρ = 1/3 [AINR’14,AR’15]

In Euclidean Space
Type Space Time Comment c = 2 Reference

LSH n1+ρ nρ ρ ≈ 1/c2 ρ = 1/4 [AI’06]

ρ ≥ 1/c2 [MNP’06,OWZ’11]

Non-LSH n1+ρ nρ ρ ≈ 1
2c2−1 ρ = 1/7 [AINR’14,AR’15]

4 Data-dependent hashing

[A.-Indyk-Nguyen-Razenshteyn’14,A.-Razenshteyn’15]

• General idea: Using a random has function, which is chosen after seeing the given dataset

• Feature: Efficiently computable

• Components:

– Nice geometric structure (has better data partition)

– Reduction to such structure (depends on the data)

• Nice geometric structure:

– Like a random dataset on a sphere s.t. random points at distance ≈ cr
– Query: At angle 45’ from near-neighbor

• Alg 1: Hyperplanes[Charikar’02]

– We sample unit r uniformly, hash p into sgn < r, p >,

Pr[h(p) = h(q)] = 1− α/π, where α is the angle between p and q

– P1 = 3/4, P2 = 1/2

– ρ ≈ 0.42

• Alg 2: Voronoi[A.-Indyk-Nguyen-Razenshteyn’14] based on [Karger-Motwani-Sudan’94]

– Sample T i.i.d. standard d-dimensional Gaussians g2, g2, .., gT .

– Hash p into h(p) = argmax1≤i≤T < p, gi >

– Note that it is simply Hyperplane LSH when T = 2

3



• Hyperplane VS Voronoi

– Hyperplane with k = 6 hyperplanes , which means we partition space into 26 = 64 pieces

– Voronoi with T = 2k = 64 vectors. ρ = 0.18

– In Hyperplane algorithm we partition into grids while in Voronoi we partition into sphere

5 Nearest Neighbor Search: Conclusion

• Approach 1: Via sketches

• Approach 2: Locality Sensitive Hashing

– Use Random Space Partitions

– Algorithm with Better Space Bound

– Use Data-dependent hashing

4


