Instructor: Alex Andoni

COMS E6998-9: Algorithmic Techniques for Massive Data

Lecture 12 — More LSH, Data-Dependent Hashing

Scribes: Mingzrian Zhong

Oct 15, 2015

1 Time-space Trade-offs

Below we present a table of LSH algorithms using different space and time.

n1+o(1+1/c3)

w(1) memory lookup

PTW’08,PTW’10]

High space and
Low query time

2
n4/€

O(dlogn)(1 mem lookup) ‘ c=1+¢

KOR’98,IM’08,Pan’06]

1001/

w(1) memory lookup

Type Space Time Comment Ref
Low space and ~n n? o=2.09/c | [Ind’01,Pan’06]
High query time ~n n’ o =0(1/c?) | [AT'06]
Medium space and | n!*? n? p=1/c [IM’98, DITM’04]
Medium query time | n!*? ne p=1/c [AT°06]
nlte nP p>1/c? [MNP’06,0WZ'11]
[
[
[

AIP06]

2 Near-linear Space for {0,1}¢

[Indyk’01,Panlgrahy’06]

e General idea: Sample a few bucket in the same hash table.

e Setting:

d
— Close: r = % [Note that from last lecture P; =
c

e Algorithm:

— Use on hash table with k =

logn
log1/P,

cr

d
— Far: cr = 5 [Note that from last lecture Po = 1 — i

=alnn

[Note that since P, = 1/2 here « is a constant]

— On query q:

*

*

*

*

Compute w = g(p) € {0, 1}*
Define w’ such that starting from w, flip each w; with probability 1 — P

1-C=1- 2

1

Lookup bucket g(w') and compute distance to all points there

Repeat R = n? times, stop if found an approximate near neighbor

logc

Theorem. For o = ©(——), we have

e Pr[find an approximate near neighbor/> 0.1
e Ezpected runtime: O(n?)

Proof. Let p* be the near neighbor, then we know that ||¢ — p*|| < r. Define w = g(q),t = ||w — g(p*)]|1.

Claim 1. Prt < k] > %
Proof. Note that E[t] = “k = =
roof. Note tha =-k=—.
d 2c s 1
Hence by Markov Inequality, Pr[t < —] > 1— — / - == L
c 2¢’ ¢ 2
. ! 1
Claim 2. Pr[w’ = g(p)|llg — pl1 > 2] < -

Proof.

Pr{Collision] < (PP + (1 — P1)(1 — Py))F
= (P(Pi+1-1)+ (1= P)(1 - P2))
= (P

+ (1= P)(1—2PR))F

<Py =1/n
O
Claim 3. Pr{w’ = g(p*)|Claim 1] > n=°
Proof.
Prw' = g(p*)|Claim 1] = (1 — P,)'PF
L\Vk/er — L yka-1/0)
> (1- (1=)1 - o)
VY
> (2—) ce 2c
O()lge «
> n_ C n_ 2c
2 —0
O

Since if w’ = g(p*) for at least one w’, we are guaranteed to output either p* or an approximate near
neighbor, we are done by Claim 3. O

3 Beyond LSH
Below we give a contrast of LSH algorithms and other algorithm.

In Hamming Space

Type Space | Time | Comment | ¢ =2 Reference
LSH nltr | nP p=1/c p=1/2 | [IM9§]
p>1/c [MNP’06,0WZ’11]

Non-LSH | n'*? | n? p~ 527 | p=1/3 | [AINR'14,AR'15]

In Euclidean Space

Type Space | Time | Comment | ¢ =2 Reference
LSH nltr | nP p~1/ct | p=1/4 | [AT'06]
p>1/c? [MNP’06,0WZ’11]

Non-LSH | n'*? | n? PR

52— | p=1/7 | [AINR’14,AR'15]

4 Data-dependent hashing

[A.-Indyk-Nguyen-Razenshteyn’14,A.-Razenshteyn’15]

General idea: Using a random has function, which is chosen after seeing the given dataset
e Feature: Efficiently computable

e Components:

— Nice geometric structure (has better data partition)

— Reduction to such structure (depends on the data)

e Nice geometric structure:

— Like a random dataset on a sphere s.t. random points at distance = cr

— Query: At angle 45’ from near-neighbor

Alg 1: Hyperplanes[Charikar’02]
— We sample unit r uniformly, hash p into sgn < r,p >,
Pr[h(p) = h(q)] = 1 — a/w, where « is the angle between p and ¢
— P =3/4,P=1/2
— p~ 042

e Alg 2: Voronoi[A.-Indyk-Nguyen-Razenshteyn’14] based on [Karger-Motwani-Sudan’94]

— Sample T i.i.d. standard d-dimensional Gaussians ¢, g2, .., g7-
— Hash p into h(p) = argmazi<i<t < p, gi >
— Note that it is simply Hyperplane LSH when T = 2

e Hyperplane VS Voronoi

— Hyperplane with k& = 6 hyperplanes , which means we partition space into 26 = 64 pieces

— Voronoi with 7' = 2¥ = 64 vectors. p = 0.18

K=6vs.T=64

1.00
0.75
0.50
0.25
.
quéry near far

point neighbor points

— In Hyperplane algorithm we partition into grids while in Voronoi we partition into sphere

Nearest Neighbor Search: Conclusion
e Approach 1: Via sketches

e Approach 2: Locality Sensitive Hashing

— Use Random Space Partitions
— Algorithm with Better Space Bound
— Use Data-dependent hashing

