
COMS E6998-9: Algorithmic Techniques for Massive Data Sep 22, 2015

Lecture 5 – Precision Sampling (cont), Streaming for Graphs

Instructor: Alex Andoni Scribe: Nikhil Mitra

Plan

• Precision Sampling (continuation)

• Streaming for Graphs

1 Precision Sampling (continuation)

1.1 Recap

Last time we proved the prescision sampling lemma that we can (with 90% success) get O(1) additive

error and 1.5 multiplicative error :

s

1.5
−O(1) < s̃ < 1.5s+O(1) (1)

with average cost equal to O(log n)

The algorithm:

• Draw each ui randomly from Exp(1), a probability distribution described roughly by e−x

• Return S̃ = maxi ãi/ui

1.2 Proof of correctness

max(
ai
ui

) ∼
∑ ai

Exp(1)
(2)

Therefore,

max(
ãi
ui

) ∼
∑
ai

Exp(1)
± 1 (3)

2 p-moment via Prescision Sampling

2.1 Theorem

Linear Sketch for the p-moment with O(1) approximation and O(n1−2/p)logO(1) n space (with 90% success

probability) can be found

1

2.2 Sketch

• Pick random ri ∈ {±1} and ui ∼ Exp(1)

• Let yi = fi · ri/u1/pi

• Hash into Hash Table S

The width of table S is w, where

w = O(n1−2/p)logO(1) n (4)

2.3 Estimator

Use the estimator maxj |S [j]|p

2.4 Algorithm

Initialize(w):

array S[w]

hash functions h, into [w]

hash functions R, into [±1]

reals ui, from Exp distribution

Process(vector f ∈ <n):
for (i = 0; i < n; ++j)

S[hi] += firi
ui1/p

Estimator:

maxj |S [j]|p

2.5 Correctness of Estimator

Theorem 1. maxj |S [j]|p is O(1) approximation with 90% probability, with w = O(n1−2/p)logO(1) n cells

2

Proof. To prove the theorem, we use precision sampling lemma.

ai = |fi|p (5)∑
ai =

∑
|fi|pãi/ui = |S(H(i))|p (6)

Now we need to show that |ai − ãi| is small. More prescisely speaking, we need to prove∣∣∣∣ ãiui − ai
ui

∣∣∣∣ ≤ εFp (7)

Claim 2. |S(H(i))p − fpi /ui| < O(εFp)

Proof. Consider cell z = h(i)

s(z) =
firi

ui1/p
+ C (8)

Where ri = ±1 and ui is an exponential random variable. Now we need to estimate the value of C i.e

how much chaff is there.

Let y(i) = firi
ui1/p

y(i) =
firi

ui1/p
(9)

C =
∑
j 6=i

yi · χ[h(j) = z] (10)

Now E[C] = 0, and hence does not serve as a good indicator of value. E[C] = 0 because ri = ±1.

Therefore, we find out E[C2]

E(C2) = E

 ∑
j1,j26=i

Yj1Yj2 · χ [h(j1) = z] · χ [h(j2) = z]

 (11)

Now all elements where j1 6= j2 disappear.

E(C2) = E

 ∑
j1,j2 6=i

Y 2
j · χ2 [h(j) = z]

 (12)

= E

 ∑
j1,j2 6=i

Y 2
j

1

w

 (13)

≤ ‖y‖
2

w
(14)

3

Now,

E
[∑

y2j

]
= E

∑
j

fj
2

uj1/p

 (15)

=
∑
j

fj
2E

[
1

uj1/p

]
(16)

Now, using the concavity property of the function,

≤
∑
j

fj
2(log n)1/p (17)

Now, Using Holder’s inequality, we can write

‖f‖2 ≤ n1−2/p‖f‖2p (18)

Using Markov’s, we can write

C2 ≤ ‖f‖2p · n
1−2/p ·O(log n)/w (19)

Setting w = 1
ε2/p

n1−2/p ·O(log n)

|C|p < ‖f‖pp = εFp (20)

2.6 Recap

• We claimed |S(H(i))p − fpi /ui| < O(εFp)

• S(H(i))p =
(

fi
ui1/p

+ C
)p

, where C =
∑

j 6=i yi · χ[h(i) = h(j)]

• We proved E(C2) ≤ ‖y‖
2

w . This implies that |C|p < εFp with 90% probability for a fixed i. But we

need it for all i.

• What we want is a |C|2 < β‖y‖2/w with high probability for a smallish w. We can indeed prove

that β = O(log2 n) using a strong concentration inequality (Bernstein)

4

3 Streaming for Graphs

3.1 Graphs

Suppose we have a graph G with n vertices and m edges. Suppose the data stream is of the list of edges.

There are multiple such examples where such graphs are used to model the data. For example,

• Web

• Socialgraphs

• Phonecalls

• Maps

• Geographical data etc.

3.2 Why Streaming for Graphs

Suppose we have a graph G which consists of a large number of vertices and even larger number of edges.

It is typical to store such graphs on the hard drive. The usual algorithms for graphs (e.g. breadth first

search) are typically random access.If we used a streaming algorithm, we would need to do a linear scan

through all the edges. For typical hard drives, linear scan is much more efficient than random access.

Further, most of the usual graph algorithms use random access. Some problems associated with graphs

are

• Connectivity

• Distances (similarities) between nodes

• PageRank (stationary distribution of random walk)

• Counting # of triangles (measure of clusterability) Various other statistics

• Matchings

• Graph partitioning

5

3.3 Parameters for graph algorithms

The usual aim of streaming graph algorithms is to use O(n) space or O(n log n). An O(n log n) algorithm

would still take much less space than an O(m) algorithm, because m can be of the order of n2.

The usual space bound for streaming algorithms, which is sublinear, is generally not possible.

3.4 Problem 1: Connectivity

The problem is stated as, Given a graph G, check wether the graph G is connected. Using a streaming

approach, we can do it on O(n) space.

The basic idea is to use a minimum spanning tree of the graph. The algorithm can be stated as

• Keep a subgraph H (starts empty)

• When we see an edge (i,j), if this edge does not create a cycle in H, then add it to H

Space: ≤ n− 1 edges only.

This subgraph H can be used to

• find connectivity between 2 nodes

• number of connected components

3.5 Problem 2: Distance

The problem can be stated as, given a graph G and 2 nodes s,t in it, find the distance between them

upto and approximation of α, where α is an odd integer.

We can do this with slight modification to the previous algorithm.

• Keep a subgraph H

• When we encounter edge (i,j), if dh(i, j) > α, then add it to H.

With regards to the space complexity, we can see that all cycles in H have length α+ 2, then according

to Bollobas’ theorem, |H| ≤ O(n1+
2

α+1)

Theorem 3. (Bollobas) If all cycles in a graph are of length α+ 2, then |H| ≤ O(n1+
2

α+1)

Proof. For a simplified case, let us assume all nodes have degree d.

• Suppose α = 2k − 1

• Explore a vertex v.

6

• At depth k, all nodes differ. Therefore,

dk ≤ n (21)

d = n(1/k) (22)

m ≤ n1+1/k (23)

= n1+
2

1+α (24)

7

