
11

Lecture 3:

Frequency Moments: 𝐹2,

Heavy Hitters

COMS E6998-9 F15

Administrivia, Plan

• Piazza: sign-up!

• PS1 releazed

• Scriber?

• Plan:

– Frequency Moments

– Heavy Hitters

2

Part 1: Frequency Moments

• Let 𝑓𝑖 be frequency of 𝑖

– Lecture 1: count one 𝑓𝑖

– Lecture 2: count # of non-zeros

• Moment 1:

– 𝑖 𝑓𝑖

– Estimator with low space?

• Just count

• Moment 2:

– 𝑖 𝑓𝑖
2

3

IP Frequency

1 3

2 2

3 0

4 9

5 0

… 0

𝑛 1

𝑖

𝑓𝑖 = 15

𝑖

𝑓𝑖
2 = 95

2nd Moment: 𝐹2

• Idea: Rademacher random variables

hash function 𝑟: 𝑛 → −1, +1

• Algorithm (Tug-of-War):

store 𝑧 = 𝑖 𝑟(𝑖) ⋅ 𝑓𝑖

• Estimator:
𝑧2

4

Algorithm TOW (𝐹2):
• Init: 𝑧 = 0
• when see element 𝑖:

𝑧 = 𝑧 + 𝑟(𝑖)
Estimator:

𝑧2

[Alon-Matias-Szegedy 1996]

Rademacher r.v.

• What if we have 𝑚 ones ?

sum of 𝑚 random ±1’s

• How much is 𝑧 = 𝑟 𝑖 roughly ?

– Say, |𝑧| ?

– 𝐸 𝑧 = 0

– 𝑉𝑎𝑟 𝑧 = 𝑚

– Apply Chebyshev:

• 𝑧 ≤ 𝑂(𝑚) with constant probability

– In fact tight

5

Algorithm TOW (𝐹2):
• Init: 𝑧 = 0
• when see element 𝑖:

𝑧 = 𝑧 + 𝑟(𝑖)
Estimator:

𝑧2

Analysis

• 𝐸 𝑧2 = ⋯
= 𝑖 𝑓𝑖

2

• 𝑉𝑎𝑟 𝑧2 ≤ 𝐸 𝑧4 = ⋯

≤ 𝑂 𝑓𝑖
2 2

• Randomness?
– 𝑂 log 𝑛 for ℎ that is 4-wise independent

• Can apply the average trick:

– Take 𝑘 = 𝑂
1

𝜖2 counters

– Obtain: 1 + 𝜖 approximation in 𝑂
1

𝜖2 log 𝑛 space

6

Algorithm TOW (𝐹2):
• Init: 𝑧 = 0
• when see element 𝑖:

𝑧 = 𝑧 + 𝑟(𝑖)
Estimator:

𝑧2

Linearity

• Important property

7

𝑧′ 𝑧′′

𝑧 = 𝑧′ + 𝑧′′ (for 𝑓 = 𝑓′ + 𝑓′′)

𝑓′ 𝑓′′

Algorithm TOW (𝐹2):
• Init: 𝑧 = 0
• when see element 𝑖:

𝑧 = 𝑧 + 𝑟(𝑖)
Estimator:

𝑧2

Similarly for difference!

• Estimate for 𝑓𝑖
′ − 𝑓𝑖

′′ 2

𝑧′ − 𝑧′′ 2

• How about |𝑓𝑖
′ − 𝑓𝑖

′′| ?

– will see later in the class

8

IP Frequency

131.107.65.14 1

18.9.22.69 1

35.8.10.140 1

IP Frequency

131.107.65.14 1

18.9.22.69 2

𝑧′ 𝑧′′

General streaming model

• At each moment, an update is:

(𝑖, 𝛿𝑖) : increase 𝑖𝑡ℎ entry by 𝛿𝑖 (may be negative!)

• Linear algorithm 𝑆 handles easily:

– 𝑆 𝑓 + 𝑒𝑖𝛿𝑖 = 𝑆 𝑓 + 𝑆 𝑒𝑖𝛿𝑖

– We’ll call 𝑆 a sketch

• [Nguyen-Li-Woodruff’14]: in fact any

algorithm for general streamin might as well

be linear!

9

Part 2: Heavy Hitters

• How about max frequency?

• Impossible to approximate in

sublinear space!

• Will settle for an even more

modest goal:

– can detect the max-frequency element if it is

very heavy

10

IP Frequency

1 3

2 2

3 0

4 9

5 0

… 0

𝑛 1

Heavy Hitters: Iteration 1

• Definition: 𝑖 is 𝜙-heavy if 𝑓𝑖 ≥ 𝜙 𝑗 𝑓𝑗

• Will find them in space 𝑂(1/𝜙)

• Idea: hash functions!
– ℎ: 𝑛 → [𝑤] random

– Element 𝑖 goes to bucket ℎ(𝑖)

– In a bucket?
• Sum frequencies there

11

[Charikar-Chen-FarachColton’04, Cormode-Muthukrishnan’05]

1

2 5 7 5 5

1 11 22 23 2

𝑤

11

ℎ1(2)

𝑤 = 𝑂(1/𝜙)

Estimator for 𝑓𝑖 ?
 𝑓𝑖 = 𝑆(ℎ 𝑖)

𝑆 𝑓2 = 2
 𝑓5 = 3
 𝑓7 = 2
 𝑓11 = 2

Iteration 1: analysis

• Let’s analyze:

– Estimator of frequency for element 𝑖

 𝑓𝑖 = 𝑆 ℎ 𝑖

= 𝑓𝑖 + 𝑗:ℎ 𝑗 =ℎ 𝑖 𝑓𝑗

• How much extra “chaff” is there?

12

1

2 7 5

1 11 22 23 2

𝑤

𝑆

Extra “chaff”

Iteration 1: extra chaff

• 𝑆 ℎ 𝑖 = 𝑓𝑖 + 𝑗:ℎ 𝑗 =ℎ 𝑖 𝑓𝑗

• Extra “chaff”:

– 𝐸 𝐶 = 𝑗 Pr ℎ 𝑗 = ℎ 𝑖 ⋅ 𝑓𝑗 =
 𝑗≠𝑖 𝑓𝑗

𝑤

• Is 𝑆(ℎ 𝑖) an unbiased estimator?

– No!

– Bias is at most
 𝑗 𝑓𝑗

𝑤
: small for 𝑓𝑖 ≫

 𝑗 𝑓𝑗

𝑤

• Done?

– Yes: by Markov 𝐶 ≤
10 𝑗 𝑓𝑗

𝑤
with 90% prob.

13

𝐶

Iteration 1: really done?
• Estimator:

 𝑓𝑖 = 𝑆 ℎ 𝑖 = 𝑓𝑖 + 𝑗:ℎ 𝑗 =ℎ 𝑖 𝑓𝑗

= 𝑓𝑖 + 𝐶
where 𝐶 ≤ 𝑂(𝑗 𝑓𝑗 /𝑤) with 90% prob

– for 𝑤 = 𝑂
1

𝜖𝜙
, and 𝑓𝑖 ≥ 𝜙 𝑗 𝑓𝑗

𝐶 ≤ 𝜖𝑓𝑖 ⇒ 𝑓𝑖 is a 1 + 𝜖 approximation!

• Issues?
– Only constant probability

– For many indices, it is an overestimate!

14

Fundamental issue: if 𝑖 and 𝑗 collide,

can’t know if it’s 𝑖 or 𝑗 with high frequency;

but must have many collisions to reduce space

1

2 7 5

1 11 22 23 2

𝑤

𝑆

Iteration 2: CountMin

• Median trick!

– Use 𝐿 = 𝑂(log 𝑛) hash tables with hash
functions ℎ𝑗

15

1

1

1

2 5 7 5 5

1 1

2

1 1

1 2

1 2

1 1 1

2 2

1 3

1 2 1

3 2

1 4

1 3 1

𝑤

𝐿

 𝑓2 = 2
 𝑓5 = 3
 𝑓7 = 1

11

 𝑓11 = 2

ℎ1(2) ℎ2(2)ℎ3 2

Algorithm CountMin:

Initialize(r, L):
array S[L][w]
L hash functions ℎ1 … ℎ𝐿, into {1,…w}

Process(int i):
for(j=0; j<L; j++)

S[j][ℎ𝑗(𝑖)] += 1;

Estimator:
foreach i in PossibleIP {

 𝑓𝑖 = 𝑚𝑒𝑑𝑖𝑎𝑛𝑗(S[j][ℎ𝑗 𝑖]);

}

Algorithm CountMin:

Initialize(r, L):
array S[L][w]
L hash functions ℎ1 … ℎ𝐿, into {1,…w}

Process(int i):
for(j=0; j<L; j++)

S[j][ℎ𝑗(𝑖)] += 1;

Estimator:
foreach i in PossibleIP {

 𝑓𝑖 = 𝑚𝑒𝑑𝑖𝑎𝑛𝑗(S[j][ℎ𝑗 𝑖]);

}

CountMin: analysis
• Consider an index 𝑖
• Each table gives

– 𝑓𝑖 = 𝑓𝑖 ± 𝜖𝜙 with 90%
probability

• Median is a ±𝜖𝜙 with
1 − 1/𝑛2 probability
– Apply union bound over

all 𝑖 ∈ 𝑛
– All are ±𝜖𝜙, with 1 −

1/𝑛 probability

• Alternative estimator?
– Take MIN instead of

median

16

min

CountMin: overall
• Iterate over all 𝑖’s

• Heavy hitters:
 𝑓𝑖

 𝑓𝑗
≥ 𝜙

– If
𝑓𝑖

 𝑓𝑗
≤ 𝜙 1 − 𝜖 , not in

the output

– If
𝑓𝑖

 𝑓𝑗
≥ 𝜙 1 + 𝜖 ,

reported as heavy hitter

• Space: 𝑂
log2 𝑛

𝜖𝜙
bits

• Issues?
– Time: to iterate Ω 𝑛

17

Algorithm CountMin:

Initialize(r, L):
array S[L][w]
L hash functions ℎ1 … ℎ𝐿, into {1,…w}

Process(int i):
for(j=0; j<L; j++)

S[j][ℎ𝑗(𝑖)] += 1;

Estimator:
foreach i in PossibleIP {

 𝑓𝑖 = 𝑚𝑒𝑑𝑖𝑎𝑛𝑗(S[j][ℎ𝑗 𝑖]);

} min

CountMin: time

• Can improve time; space degrades to 𝑂
log3 𝑛

𝜖𝜙
bits

• Idea: dyadic intervals
– Each level with its own sketch

– Find heavy hitters by following down the tree all the
heavy hitters (in intermediary)

18

𝑖=1

𝑛

𝑓𝑖

𝑖=1

𝑛/2

𝑓𝑖

𝑖=
𝑛
2

+1

𝑛

𝑓𝑖

(virtual) stream 1,

with 1 element

(virtual) stream 2,

with 2 elements

(virtual) stream 𝑗,
with 2𝑗 elements

(real) stream log 𝑛,

with 𝑛 elements

…

𝑓1 𝑓2 𝑓3 𝑓𝑖 𝑓𝑛

A variant: CountSketch
• Is CountMin linear?

– CountMin(𝑓′ + 𝑓′′) from CountMin(𝑓′) and
CountMin(𝑓′′) ?

– Just sum the two!
• sum the 2 arrays, assuming we use the same hash

function ℎ𝑗

• What about 𝑓 = 𝑓′ − 𝑓′′ ?

– “Heavy hitter”: if 𝑓𝑖 ≥ 𝜙 𝑗 𝑓𝑗 = 𝜙 ⋅ ||𝑓||1
– “min” is an issue

– But median is still ok

– Ideas to improve it further?
• Use Tug of War 𝑟 in each bucket => CountSketch

• Better in certain cases

19

Recap

• 2nd moment:

– Tug-Of-War (sum of random ±1’s)

• Linearity:

– Can add/subtract sketches easily

• Max-frequency:

– Can only do heavy hitters

– Hash functions to distribute elements

– CountMin

• https://sites.google.com/site/countminsketch/

– CountSketch: CountMedian+TugOfWar

20

https://sites.google.com/site/countminsketch/

