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Lecture 3:

Frequency Moments: 𝐹2,

Heavy Hitters

COMS E6998-9 F15



Administrivia, Plan

• Piazza: sign-up! 

• PS1 releazed

• Scriber?

• Plan:

– Frequency Moments

– Heavy Hitters
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Part 1: Frequency Moments

• Let 𝑓𝑖 be frequency of 𝑖

– Lecture 1: count one 𝑓𝑖

– Lecture 2: count # of non-zeros

• Moment 1:

–  𝑖 𝑓𝑖

– Estimator with low space?

• Just count

• Moment 2:

–  𝑖 𝑓𝑖
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IP Frequency

1 3

2 2

3 0

4 9

5 0

… 0

𝑛 1

 

𝑖

𝑓𝑖 = 15

 

𝑖

𝑓𝑖
2 = 95



2nd Moment: 𝐹2

• Idea: Rademacher random variables

hash function 𝑟: 𝑛 → −1, +1

• Algorithm (Tug-of-War):

store 𝑧 =  𝑖 𝑟(𝑖) ⋅ 𝑓𝑖

• Estimator:
𝑧2
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Algorithm TOW (𝐹2):
• Init: 𝑧 = 0
• when see element 𝑖:

𝑧 = 𝑧 + 𝑟(𝑖)
Estimator:

𝑧2

[Alon-Matias-Szegedy 1996]



Rademacher r.v.

• What if we have 𝑚 ones ?

sum of 𝑚 random ±1’s

• How much is 𝑧 =  𝑟 𝑖 roughly ?

– Say, |𝑧| ?

– 𝐸 𝑧 = 0

– 𝑉𝑎𝑟 𝑧 = 𝑚

– Apply Chebyshev: 

• 𝑧 ≤ 𝑂( 𝑚) with constant probability

– In fact tight

5

Algorithm TOW (𝐹2):
• Init: 𝑧 = 0
• when see element 𝑖:

𝑧 = 𝑧 + 𝑟(𝑖)
Estimator:

𝑧2



Analysis

• 𝐸 𝑧2 = ⋯
=  𝑖 𝑓𝑖
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• 𝑉𝑎𝑟 𝑧2 ≤ 𝐸 𝑧4 = ⋯

≤ 𝑂  𝑓𝑖
2 2

• Randomness?
– 𝑂 log 𝑛 for ℎ that is 4-wise independent

• Can apply the average trick:

– Take 𝑘 = 𝑂
1

𝜖2 counters

– Obtain: 1 + 𝜖 approximation in 𝑂
1

𝜖2 log 𝑛 space
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Algorithm TOW (𝐹2):
• Init: 𝑧 = 0
• when see element 𝑖:

𝑧 = 𝑧 + 𝑟(𝑖)
Estimator:

𝑧2



Linearity

• Important property
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𝑧′ 𝑧′′

𝑧 = 𝑧′ + 𝑧′′ (for 𝑓 = 𝑓′ + 𝑓′′)

𝑓′ 𝑓′′

Algorithm TOW (𝐹2):
• Init: 𝑧 = 0
• when see element 𝑖:

𝑧 = 𝑧 + 𝑟(𝑖)
Estimator:

𝑧2



Similarly for difference!

• Estimate for  𝑓𝑖
′ − 𝑓𝑖

′′ 2

𝑧′ − 𝑧′′ 2

• How about  |𝑓𝑖
′ − 𝑓𝑖

′′| ?

– will see later in the class
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IP Frequency

131.107.65.14 1

18.9.22.69 1

35.8.10.140 1

IP Frequency

131.107.65.14 1

18.9.22.69 2

𝑧′ 𝑧′′



General streaming model

• At each moment, an update is:

(𝑖, 𝛿𝑖) : increase 𝑖𝑡ℎ entry by 𝛿𝑖 (may be negative!)

• Linear algorithm 𝑆 handles easily:

– 𝑆 𝑓 + 𝑒𝑖𝛿𝑖 = 𝑆 𝑓 + 𝑆 𝑒𝑖𝛿𝑖

– We’ll call 𝑆 a sketch

• [Nguyen-Li-Woodruff’14]: in fact any 

algorithm for general streamin might as well 

be linear!
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Part 2: Heavy Hitters

• How about max frequency?

• Impossible to approximate in

sublinear space!

• Will settle for an even more

modest goal: 

– can detect the max-frequency element if it is 

very heavy
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Heavy Hitters: Iteration 1

• Definition: 𝑖 is 𝜙-heavy if 𝑓𝑖 ≥ 𝜙  𝑗 𝑓𝑗

• Will find them in space 𝑂(1/𝜙)

• Idea: hash functions!
– ℎ: 𝑛 → [𝑤] random

– Element 𝑖 goes to bucket ℎ(𝑖)

– In a bucket?
• Sum frequencies there
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[Charikar-Chen-FarachColton’04, Cormode-Muthukrishnan’05]

1

2 5 7 5 5

1 11 22 23 2

𝑤

11

ℎ1(2)

𝑤 = 𝑂(1/𝜙)

Estimator for 𝑓𝑖 ?
 𝑓𝑖 = 𝑆(ℎ 𝑖 )

𝑆  𝑓2 = 2
 𝑓5 = 3
 𝑓7 = 2
 𝑓11 = 2



Iteration 1: analysis

• Let’s analyze:

– Estimator of frequency for element 𝑖

 𝑓𝑖 = 𝑆 ℎ 𝑖

= 𝑓𝑖 +  𝑗:ℎ 𝑗 =ℎ 𝑖 𝑓𝑗

• How much extra “chaff” is there?
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1

2 7 5
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𝑤

𝑆

Extra “chaff”



Iteration 1: extra chaff

• 𝑆 ℎ 𝑖 = 𝑓𝑖 +  𝑗:ℎ 𝑗 =ℎ 𝑖 𝑓𝑗

• Extra “chaff”:

– 𝐸 𝐶 =  𝑗 Pr ℎ 𝑗 = ℎ 𝑖 ⋅ 𝑓𝑗 =
 𝑗≠𝑖 𝑓𝑗

𝑤

• Is 𝑆(ℎ 𝑖 ) an unbiased estimator?

– No!

– Bias is at most 
 𝑗 𝑓𝑗

𝑤
: small for 𝑓𝑖 ≫

 𝑗 𝑓𝑗

𝑤

• Done?

– Yes: by Markov 𝐶 ≤
10  𝑗 𝑓𝑗

𝑤
with 90% prob.
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𝐶



Iteration 1: really done?
• Estimator:

 𝑓𝑖 = 𝑆 ℎ 𝑖 = 𝑓𝑖 +  𝑗:ℎ 𝑗 =ℎ 𝑖 𝑓𝑗

= 𝑓𝑖 + 𝐶
where 𝐶 ≤ 𝑂( 𝑗 𝑓𝑗 /𝑤) with 90% prob

– for 𝑤 = 𝑂
1

𝜖𝜙
, and 𝑓𝑖 ≥ 𝜙  𝑗 𝑓𝑗

𝐶 ≤ 𝜖𝑓𝑖 ⇒  𝑓𝑖 is a 1 + 𝜖 approximation!

• Issues?
– Only constant probability

– For many indices, it is an overestimate!
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Fundamental issue: if 𝑖 and 𝑗 collide, 

can’t know if it’s 𝑖 or 𝑗 with high frequency;

but must have many collisions to reduce space
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Iteration 2: CountMin

• Median trick!

– Use 𝐿 = 𝑂(log 𝑛) hash tables with hash 
functions ℎ𝑗
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𝑤

𝐿

 𝑓2 = 2
 𝑓5 = 3
 𝑓7 = 1
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 𝑓11 = 2

ℎ1(2) ℎ2(2)ℎ3 2

Algorithm CountMin:

Initialize(r, L):
array S[L][w]
L hash functions ℎ1 … ℎ𝐿, into {1,…w}

Process(int i):
for(j=0; j<L; j++)

S[j][ ℎ𝑗(𝑖) ] += 1;

Estimator:
foreach i in PossibleIP {

 𝑓𝑖 = 𝑚𝑒𝑑𝑖𝑎𝑛𝑗(S[j][ℎ𝑗 𝑖 ]);

}



Algorithm CountMin:

Initialize(r, L):
array S[L][w]
L hash functions ℎ1 … ℎ𝐿, into {1,…w}

Process(int i):
for(j=0; j<L; j++)

S[j][ ℎ𝑗(𝑖) ] += 1;

Estimator:
foreach i in PossibleIP {

 𝑓𝑖 = 𝑚𝑒𝑑𝑖𝑎𝑛𝑗(S[j][ℎ𝑗 𝑖 ]);

}

CountMin: analysis
• Consider an index 𝑖
• Each table gives 

–  𝑓𝑖 = 𝑓𝑖 ± 𝜖𝜙 with 90%
probability

• Median is a ±𝜖𝜙 with 
1 − 1/𝑛2 probability
– Apply union bound over 

all 𝑖 ∈ 𝑛
– All are ±𝜖𝜙, with 1 −

1/𝑛 probability

• Alternative estimator?
– Take MIN instead of 

median
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min



CountMin: overall
• Iterate over all 𝑖’s

• Heavy hitters: 
 𝑓𝑖

 𝑓𝑗
≥ 𝜙

– If 
𝑓𝑖

 𝑓𝑗
≤ 𝜙 1 − 𝜖 , not in 

the output

– If 
𝑓𝑖

 𝑓𝑗
≥ 𝜙 1 + 𝜖 , 

reported as heavy hitter

• Space: 𝑂
log2 𝑛

𝜖𝜙
bits

• Issues?
– Time: to iterate Ω 𝑛
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Algorithm CountMin:

Initialize(r, L):
array S[L][w]
L hash functions ℎ1 … ℎ𝐿, into {1,…w}

Process(int i):
for(j=0; j<L; j++)

S[j][ ℎ𝑗(𝑖) ] += 1;

Estimator:
foreach i in PossibleIP {

 𝑓𝑖 = 𝑚𝑒𝑑𝑖𝑎𝑛𝑗(S[j][ℎ𝑗 𝑖 ]);

} min



CountMin: time

• Can improve time; space degrades to 𝑂
log3 𝑛

𝜖𝜙
bits

• Idea: dyadic intervals
– Each level with its own sketch

– Find heavy hitters by following down the tree all the 
heavy hitters (in intermediary)
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𝑖=1

𝑛

𝑓𝑖

 

𝑖=1

𝑛/2

𝑓𝑖
 

𝑖=
𝑛
2

+1

𝑛

𝑓𝑖

(virtual) stream 1,

with 1 element

(virtual) stream 2,

with 2 elements

(virtual) stream 𝑗,
with 2𝑗 elements

(real) stream log 𝑛,

with 𝑛 elements

…

𝑓1 𝑓2 𝑓3 𝑓𝑖 𝑓𝑛



A variant: CountSketch
• Is CountMin linear?

– CountMin(𝑓′ + 𝑓′′) from CountMin(𝑓′) and 
CountMin(𝑓′′) ?

– Just sum the two! 
• sum the 2 arrays, assuming we use the same hash 

function ℎ𝑗

• What about 𝑓 = 𝑓′ − 𝑓′′ ?

– “Heavy hitter”: if 𝑓𝑖 ≥ 𝜙  𝑗 𝑓𝑗 = 𝜙 ⋅ ||𝑓||1
– “min” is an issue

– But median is still ok

– Ideas to improve it further?
• Use Tug of War 𝑟 in each bucket => CountSketch

• Better in certain cases
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Recap

• 2nd moment:

– Tug-Of-War (sum of random ±1’s)

• Linearity:

– Can add/subtract sketches easily

• Max-frequency:

– Can only do heavy hitters

– Hash functions to distribute elements

– CountMin

• https://sites.google.com/site/countminsketch/

– CountSketch: CountMedian+TugOfWar

20

https://sites.google.com/site/countminsketch/

