COMS E6998-9 F15

Lecture 3: Frequency Moments: F_2 , Heavy Hitters

Administrivia, Plan

- Piazza: sign-up!
- PS1 releazed
- Scriber?

- Plan:
 - Frequency Moments
 - Heavy Hitters

Part 1: Frequency Moments

- Let f_i be frequency of i
 - Lecture 1: count one f_i
 - Lecture 2: count # of non-zeros

- $-\sum_{i} f_{i}$
- Estimator with low space?
 - Just count
- Moment 2:

$$-\sum_i f_i^2$$

IP	Frequency
1	3
2	2
3	0
4	9
5	0
•••	0
n	1

$$\sum_{i} f_i = 15$$

$$\sum_{i} f_i^2 = 95$$

2^{nd} Moment: F_2

[Alon-Matias-Szegedy 1996]

 Idea: Rademacher random variables hash function r: [n] → {-1,+1}

- Algorithm (Tug-of-War): store $z = \sum_{i} r(i) \cdot f_i$
- Estimator: z^2

Algorithm TOW (F_2) :

- Init: z = 0
- when see element *i*:

$$z = z + r(i)$$

Estimator:

 z^2

Rademacher r.v.

• What if we have m ones? sum of m random ± 1 's

Algorithm TOW (F_2) :

- Init: z=0
- when see element i:

$$z = z + r(i)$$

Estimator:

 z^2

- How much is $z = \sum r(i)$ roughly?
 - Say, |z| ?
 - -E[z]=0
 - -Var[z] = m
 - Apply Chebyshev:
 - $|z| \le O(\sqrt{m})$ with constant probability
 - In fact tight

Analysis

•
$$E[z^2] = \cdots$$

= $\sum_i f_i^2$

Algorithm TOW (
$$F_2$$
):

- Init: z = 0
- when see element i:

$$z = z + r(i)$$

Estimator:

 z^2

•
$$Var[z^2] \le E[z^4] = \cdots$$

 $\le O(\sum f_i^2)^2$

- Randomness?
 - $-O(\log n)$ for h that is 4-wise independent
- Can apply the average trick:
 - Take $k = O\left(\frac{1}{\epsilon^2}\right)$ counters
 - Obtain: $1 + \epsilon$ approximation in $O\left(\frac{1}{\epsilon^2} \log n\right)$ space

Linearity

Important property

Algorithm TOW (F_2) :

- Init: z = 0
- when see element i:

$$z = z + r(i)$$

Estimator:

$$z^2$$

$$z = z' + z''$$
 (for $f = f' + f''$)

Similarly for difference!

- Estimate for $\sum (f'_i f''_i)^2$ $(z' - z'')^2$
- How about $\sum |f_i' f_i''|$?
 - will see later in the class

General streaming model

At each moment, an update is:

```
(i, \delta_i): increase i^{th} entry by \delta_i (may be negative!)
```

- Linear algorithm S handles easily:
 - $-S(f + e_i \delta_i) = S(f) + S(e_i \delta_i)$
 - We'll call S a sketch

• [Nguyen-Li-Woodruff'14]: in fact any algorithm for general streamin might as well be linear!

Part 2: Heavy Hitters

How about max frequency?

 Impossible to approximate in sublinear space!

IP	Frequency
1	3
2	2
3	0
4	9
5	0
	0
n	1

- Will settle for an even more modest goal:
 - can detect the max-frequency element if it is very heavy

Heavy Hitters: Iteration 1

[Charikar-Chen-FarachColton'04, Cormode-Muthukrishnan'05]

- Definition: i is ϕ -heavy if $f_i \ge \phi \sum_j f_j$
- Will find them in space $O(1/\phi)$
- Idea: hash functions!
 - $-h:[n] \rightarrow [w]$ random

 $w = O(1/\phi)$

- Element i goes to bucket h(i)
- In a bucket?
 - Sum frequencies there

Estimator for
$$f_i$$
?

$$\hat{f}_i = S(h(i))$$

$$\widehat{f}_2 = 2$$

$$\widehat{f}_5 = 3$$

$$\widehat{f}_7 = 2$$

$$\widehat{f}_{11} = 2$$

Iteration 1: analysis

- Let's analyze:
 - Estimator of frequency for element i

$$\widehat{f_i} = S(h(i))$$

$$= f_i + \sum_{\{j:h(j)=h(i)\}} f_j$$
Extra "chaff"

How much extra "chaff" is there?

Iteration 1: extra chaff

•
$$S(h(i)) = f_i + \sum_{\{j:h(j)=h(i)\}} f_j$$

• Extra "chaff":

$$-E[C] = \sum_{j} \Pr[h(j) = h(i)] \cdot f_{j} = \frac{\sum_{j \neq i} f_{j}}{w}$$

- Is S(h(i)) an unbiased estimator?
 - No!
 - Bias is at most $\frac{\sum_{j} f_{j}}{w}$: small for $f_{i} \gg \frac{\sum_{j} f_{j}}{w}$
- Done?
 - Yes: by Markov $C \leq \frac{10 \sum_{j} f_{j}}{w}$ with 90% prob.

Iteration 1: really done?

Estimator:

$$\widehat{f}_i = S(h(i)) = f_i + \sum_{\{j:h(j)=h(i)\}} f_j$$
$$= f_i + C$$

where $C \leq O(\sum_i f_i / w)$ with 90% prob

- for
$$w = O\left(\frac{1}{\epsilon \phi}\right)$$
, and $f_i \ge \phi \sum_j f_j$
 $C \le \epsilon f_i \Rightarrow \widehat{f}_i$ is a $1 + \epsilon$ approximation!

- Issues?
 - Only constant probability
 - For many indices, it is an overestimate!

Fundamental issue: if *i* and *j* collide, can't know if it's *i* or *j* with high frequency;

but must have many collisions to reduce space

Iteration 2: CountMin

- Median trick!
 - Use $L = O(\log n)$ hash tables with hash functions h_i


```
\widehat{f}_2 = 2
\widehat{f}_5 = 3
\widehat{f}_7 = 1
\widehat{f}_{11} = 2
```

```
Algorithm CountMin: Initialize(r, L): array S[L][w] L hash functions h_1 \dots h_L, into \{1,\dots w\} Process(int i): for(j=0; j<L; j++) S[j][h_j(i)] += 1; Estimator: foreach i in PossibleIP \{f_i = median_j(S[j][h_j(i)]); \}
```

CountMin: analysis

- Consider an index i
- Each table gives
 - $-\widehat{f}_i = f_i \pm \epsilon \phi$ with 90% probability
- Median is a $\pm \epsilon \phi$ with $1 1/n^2$ probability
 - Apply union bound over all $i \in [n]$
 - All are $\pm \epsilon \phi$, with 1 1/n probability
- Alternative estimator?
 - Take MIN instead of median

```
Algorithm CountMin:

Initialize(r, L):
    array S[L][w]
    L hash functions h_1 \dots h_L, into \{1,\dots w\}

Process(int i):
    for(j=0; j<L; j++)
        S[j][h_j(i)] += 1;

Estimator:
    foreach i in PossibleIP \{f_i = median_j(S[j][h_j(i)]); \}
    min
```

CountMin: overall

- Iterate over all i's
- Heavy hitters: $\frac{\widehat{f_i}}{\sum f_j} \ge \phi$
 - If $\frac{f_i}{\sum f_j} \le \phi(1 \epsilon)$, not in the output
 - $-\operatorname{lf}\frac{f_i}{\sum f_j} \geq \phi(1+\epsilon),$ reported as heavy hitter
- Space: $O\left(\frac{\log^2 n}{\epsilon \phi}\right)$ bits
- Issues?
 - Time: to iterate $\Omega(n)$

```
Algorithm CountMin:

Initialize(r, L):
    array S[L][w]
    L hash functions h_1 \dots h_L, into \{1,\dots w\}

Process(int i):
    for(j=0; j<L; j++)
        S[j][h_j(i)] += 1;

Estimator:
    foreach i in PossibleIP \{f_i = median_j(S[j][h_j(i)]); \}
    min
```

CountMin: time

- Can improve time; space degrades to $O\left(\frac{\log^3 n}{\epsilon \phi}\right)$ bits
- Idea: dyadic intervals
 - Each level with its own sketch
 - Find heavy hitters by following down the tree all the heavy hitters (in intermediary)

A variant: CountSketch

- Is CountMin linear?
 - CountMin(f' + f'') from CountMin(f') and CountMin(f'')?
 - Just sum the two!
 - sum the 2 arrays, assuming we use the same hash function h_i
- What about f = f' f''?
 - "Heavy hitter": if $|f_i| \ge \phi \sum_j |f_j| = \phi \cdot ||f||_1$
 - "min" is an issue
 - But median is still ok
 - Ideas to improve it further?
 - Use Tug of War r in each bucket => CountSketch
 - Better in certain cases

Recap

- 2nd moment:
 - Tug-Of-War (sum of random ± 1 's)
- Linearity:
 - Can add/subtract sketches easily
- Max-frequency:
 - Can only do heavy hitters
 - Hash functions to distribute elements
 - CountMin
 - https://sites.google.com/site/countminsketch/
 - CountSketch: CountMedian+TugOfWar