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Abstract

Deterministic neural networks (NNs) are increasingly being deployed in safety
critical domains, where calibrated, robust, and efficient measures of uncertainty
are crucial. In this paper, we propose a novel method for training non-Bayesian
NNs to estimate a continuous target as well as its associated evidence in order
to learn both aleatoric and epistemic uncertainty. We accomplish this by placing
evidential priors over the original Gaussian likelihood function and training the
NN to infer the hyperparameters of the evidential distribution. We additionally
impose priors during training such that the model is regularized when its predicted
evidence is not aligned with the correct output. Our method does not rely on
sampling during inference or on out-of-distribution (OOD) examples for training,
thus enabling efficient and scalable uncertainty learning. We demonstrate learning
well-calibrated measures of uncertainty on various benchmarks, scaling to complex
computer vision tasks, as well as robustness to adversarial and OOD test samples.
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Figure 1: Evidential regression simultaneously
learns a continuous target along with aleatoric
(data) and epistemic (model) uncertainty. Given an
input, the network is trained to predict the parame-
ters of an evidential distribution, which models a
higher-order probability distribution over the indi-
vidual likelihood parameters, (µ, σ2).

Regression-based neural networks (NNs) are being
deployed in safety critical domains in computer vi-
sion [15] as well as in robotics and control [1, 6],
where the ability to infer model uncertainty is crucial
for eventual wide-scale adoption. Furthermore, pre-
cise and calibrated uncertainty estimates are useful
for interpreting confidence, capturing domain shift
of out-of-distribution (OOD) test samples, and recog-
nizing when the model is likely to fail.

There are two axes of NN uncertainty that can be
modeled: (1) uncertainty in the data, called aleatoric
uncertainty, and (2) uncertainty in the prediction,
called epistemic uncertainty. While representations
of aleatoric uncertainty can be learned directly from
data, there exist several approaches for estimating
epistemic uncertainty, such as Bayesian NNs, which
place probabilistic priors over network weights and
use sampling to approximate output variance [25].
However, Bayesian NNs face several limitations, including the intractability of directly inferring
the posterior distribution of the weights given data, the requirement and computational expense of
sampling during inference, and the question of how to choose a weight prior.
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In contrast, evidential deep learning formulates learning as an evidence acquisition process [42, 32].
Every training example adds support to a learned higher-order, evidential distribution. Sampling
from this distribution yields instances of lower-order likelihood functions from which the data
was drawn. Instead of placing priors on network weights, as is done in Bayesian NNs, evidential
approaches place priors directly over the likelihood function. By training a neural network to output
the hyperparameters of the higher-order evidential distribution, a grounded representation of both
epistemic and aleatoric uncertainty can then be learned without the need for sampling.

To date, evidential deep learning has been targeted towards discrete classification problems [42, 32,
22] and has required either a well-defined distance measure to a maximally uncertain prior [42]
or relied on training with OOD data to inflate model uncertainty [32, 31]. In contrast, continuous
regression problems present the complexity of lacking a well-defined distance measure to regularize
the inferred evidential distribution. Further, pre-defining a reasonable OOD dataset is non-trivial in
the majority of applications; thus, methods to obtain calibrated uncertainty on OOD data from only
an in-distribution training set are required.

We present a novel approach that models the uncertainty of regression networks via learned evidential
distributions (Fig. 1). Specifically, this work makes the following contributions:

1. A novel and scalable method for learning epistemic and aleatoric uncertainty on regression
problems, without sampling during inference or training with out-of-distribution data;

2. Formulation of an evidential regularizer for continuous regression problems, necessary for
penalizing incorrect evidence on errors and OOD examples;

3. Evaluation of epistemic uncertainty on benchmark and complex vision regression tasks
along with comparisons to state-of-the-art NN uncertainty estimation techniques; and

4. Robustness and calibration evaluation on OOD and adversarially perturbed test input data.

2 Modelling uncertainties from data

2.1 Preliminaries

Consider the following supervised optimization problem: given a dataset, D, of N paired training
examples, D = {xi, yi}Ni=1, we aim to learn a functional mapping f , parameterized by a set of
weights, w, which approximately solves the following optimization problem:

min
w

J(w); J(w) =
1

N

N∑
i=1

Li(w), (1)

where Li(·) describes a loss function. In this work, we consider deterministic regression problems,
which commonly optimize the sum of squared errors, Li(w) = 1

2 ‖yi − f(xi;w)‖2. In doing so, the
model is encouraged to learn the average correct answer for a given input, but does not explicitly
model any underlying noise or uncertainty in the data when making its estimation.

2.2 Maximum likelihood estimation

One can approach this problem from a maximum likelihood perspective, where we learn model
parameters that maximize the likelihood of observing a particular set of training data. In the context
of deterministic regression, we assume our targets, yi, were drawn i.i.d. from a distribution such
as a Gaussian with mean and variance parameters θ = (µ, σ2). In maximum likelihood estimation
(MLE), we aim to learn a model to infer θ that maximize the likelihood of observing our targets, y,
given by p(yi|θ). This is achieved by minimizing the negative log likelihood loss function:

Li(w) = − log p(yi|µ, σ2︸ ︷︷ ︸
θ

) =
1

2
log(2πσ2) +

(yi − µ)2

2σ2
. (2)

In learning θ, this likelihood function successfully models the uncertainty in the data, also known as
the aleatoric uncertainty. However, our model is oblivious to its predictive epistemic uncertainty [25].

In this paper, we present a novel approach for estimating the evidence supporting network predictions
in regression by directly learning both the aleatoric uncertainty present in the data as well as the
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Figure 2: Normal Inverse-Gamma distribution. Different realizations of our evidential distribution (A)
correspond to different levels of confidences in the parameters (e.g. µ, σ2). Sampling from a single realization
of a higher-order evidential distribution (B), yields lower-order likelihoods (C) over the data (e.g. p(y|µ, σ2)).
Darker shading indicates higher probability mass. We aim to learn a model that predicts the target, y, from an
input, x, with an evidential prior imposed on our likelihood to enable uncertainty estimation.

model’s underlying epistemic uncertainty. We achieve this by placing higher-order prior distributions
over the learned parameters governing the distribution from which our observations are drawn.

3 Evidential uncertainty for regression

3.1 Problem setup

We consider the problem where the observed targets, yi, are drawn i.i.d. from a Gaussian distribution,
as in standard MLE (Sec. 2.2), but now with unknown mean and variance (µ, σ2), which we seek to
also probabilistically estimate. We model this by placing a prior distribution on (µ, σ2). If we assume
observations are drawn from a Gaussian, in line with assumptions Sec. 2.2, this leads to placing a
Gaussian prior on the unknown mean and an Inverse-Gamma prior on the unknown variance:

(y1, . . . , yN ) ∼ N (µ, σ2)

µ ∼ N (γ, σ2υ−1) σ2 ∼ Γ−1(α, β). (3)

where Γ(·) is the gamma function,m = (γ, υ, α, β), and γ ∈ R, υ > 0, α > 1, β > 0.

Our aim is to estimate a posterior distribution q(µ, σ2) = p(µ, σ2|y1, . . . , yN ). To obtain an approxi-
mation for the true posterior, we assume that the estimated distribution can be factorized [39] such
that q(µ, σ2) = q(µ) q(σ2). Thus, our approximation takes the form of the Gaussian conjugate prior,
the Normal Inverse-Gamma (NIG) distribution:

p(µ, σ2︸ ︷︷ ︸
θ

| γ, υ, α, β︸ ︷︷ ︸
m

) =
βα
√
υ

Γ(α)
√

2πσ2

(
1

σ2

)α+1

exp

{
−2β + υ(γ − µ)2

2σ2

}
. (4)

A popular interpretation of the parameters of this conjugate prior distribution is in terms of “virtual-
observations” in support of a given property [23]. For example, the mean of a NIG distribution can be
intuitively interpreted as being estimated from υ virtual-observations with sample mean γ, while its
variance is estimated from α virtual-observations with sample mean γ and sum of squared deviations
2υ. Following from this interpretation, we define the total evidence, Φ, of our evidential distributions
as the sum of all inferred virtual-observations counts: Φ = 2υ + α.

Drawing a sample θj from the NIG distribution yields a single instance of our likelihood function,
namely N (µj , σ

2
j ). Thus, the NIG hyperparameters, (γ, υ, α, β), determine not only the location but

also the dispersion concentrations, or uncertainty, associated with our inferred likelihood function.
Therefore, we can interpret the NIG distribution as the higher-order, evidential distribution on top of
the unknown lower-order likelihood distribution from which observations are drawn.
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For example, in Fig. 2A we visualize different evidential NIG distributions with varying model
parameters. We illustrate that by increasing the evidential parameters (i.e. υ, α) of this distribution,
the p.d.f. becomes tightly concentrated about its inferred likelihood function. Considering a single
parameter realization of this higher-order distribution (Fig. 2B), we can subsequently sample many
lower-order realizations of our likelihood function, as shown in Fig. 2C.

In this work, we use neural networks to infer, given an input, the hyperparameters, m, of this
higher-order, evidential distribution. This approach presents several distinct advantages compared to
prior work. First, our method enables simultaneous learning of the desired regression task, along with
aleatoric and epistemic uncertainty estimation, by enforcing evidential priors and without leveraging
any out-of-distribution data during training. Second, since the evidential prior is a higher-order NIG
distribution, the maximum likelihood Gaussian can be computed analytically from the expected
values of the (µ, σ2) parameters, without the need for sampling. Third, we can effectively estimate
the epistemic or model uncertainty associated with the network’s prediction by simply evaluating the
variance of our inferred evidential distribution.

3.2 Prediction and uncertainty estimation

The aleatoric uncertainty, also referred to as statistical or data uncertainty, is representative of
unknowns that differ each time we run the same experiment. The epistemic (or model) uncertainty,
describes the estimated uncertainty in the prediction. Given a NIG distribution, we can compute the
prediction, aleatoric, and epistemic uncertainty as

E[µ] = γ︸ ︷︷ ︸
prediction

, E[σ2] = β
α−1︸ ︷︷ ︸

aleatoric

, Var[µ] = β
υ(α−1)︸ ︷︷ ︸

epistemic

. (5)

Complete derivations for these moments are available in Sec. S1.1. Note that Var[µ] = E[σ2]/υ,
which is expected as υ is one of our two evidential virtual-observation counts.

3.3 Learning the evidential distribution

Having formalized the use of an evidential distribution to capture both aleatoric and epistemic
uncertainty, we next describe our approach for learning a model to output the hyperparameters of this
distribution. For clarity, we structure the learning process as a multi-task learning problem, with two
distinct parts: (1) acquiring or maximizing model evidence in support of our observations and (2)
minimizing evidence or inflating uncertainty when the prediction is wrong. At a high level, we can
think of (1) as a way of fitting our data to the evidential model while (2) enforces a prior to remove
incorrect evidence and inflate uncertainty.

(1) Maximizing the model fit. From Bayesian probability theory, the “model evidence”, or marginal
likelihood, is defined as the likelihood of an observation, yi, given the evidential distribution parame-
tersm and is computed by marginalizing over the likelihood parameters θ:

p(yi|m) =
p(yi|θ,m)p(θ|m)

p(θ|yi,m)
=

∫ ∞
σ2=0

∫ ∞
µ=−∞

p(yi|µ, σ2)p(µ, σ2|m) dµdσ2 (6)

The model evidence is, in general, not straightforward to evaluate since computing it involves
integrating out the dependence on latent model parameters. However, in the case of placing a NIG
evidential prior on our Gaussian likelihood function an analytical solution does exist:

p(yi|m) = St
(
yi; γ,

β(1 + υ)

υ α
, 2α

)
. (7)

where St
(
y;µSt, σ

2
St, υSt

)
is the Student-t distribution evaluated at y with location µSt, scale σ2

St, and
υSt degrees of freedom. We denote the loss, LNLL

i (w), as the negative logarithm of model evidence

LNLL
i (w) = 1

2 log
(
π
υ

)
− α log(Ω) +

(
α+ 1

2

)
log((yi − γ)2υ + Ω) + log

(
Γ(α)

Γ(α+ 1
2 )

)
(8)

where Ω = 2β(1 + υ). Complete derivations for Eq. 7 and Eq. 8 are provided in Sec. S1.2. This
loss provides an objective for training a NN to output parameters of a NIG distribution to fit the
observations by maximizing the model evidence.
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(2) Minimizing evidence on errors. Next, we describe how to regularize training by applying an
incorrect evidence penalty (i.e., high uncertainty prior) to try to minimize evidence on incorrect pre-
dictions. This has been demonstrated with success in the classification setting where non-misleading
evidence is removed from the posterior, and the uncertain prior is set to a uniform Dirichlet [42]. The
analogous minimization in the regression setting involves KL[ p(θ|m) || p(θ|m̃) ], where m̃ are the
parameters of the uncertain NIG prior with zero evidence (i.e., {α, υ} = 0). Unfortunately, the KL
between any NIG and the zero evidence NIG prior is undefined(1). Furthermore, this loss should not
be enforced everywhere, but instead specifically where the posterior is “misleading”. Past works in
classification [42] accomplish this by using the ground truth likelihoood classification (the one-hot
encoded labels) to remove “non-misleading” evidence. However, in regression, it is not possible
to penalize evidence everywhere except our single label point estimate, as this space is infinite and
unbounded. Thus, these previous approaches for regularizing evidential learning are not applicable.

To address these challenges in the regression setting, we formulate a novel evidence regularizer, LR
i ,

scaled on the error of the i-th prediction,

LR
i (w) = |yi − E[µi]| · Φ = |yi − γ| · (2υ + α). (9)

This loss imposes a penalty whenever there is an error in the prediction and scales with the total
evidence of our inferred posterior. Conversely, large amounts of predicted evidence will not be
penalized as long as the prediction is close to the target. A naïve alternative to directly penalizing
evidence would be to soften the zero-evidence prior to instead have ε-evidence such that the KL is
finite and defined. However, doing so results in hypersensitivity to the selection of ε, as it should be
small yet KL→∞ as ε→ 0. We demonstrate the added value of our evidential regularizer through
ablation analysis (Sec. 4.1), the limitations of the soft KL regularizer (Sec. S2.1.3), and the ability to
learn disentangled aletoric and epistemic uncertainty (Sec. S2.1.4).

Summary and implementation details. The total loss, Li(w), consists of the two loss terms for
maximizing and regularizing evidence, scaled by a regularization coefficient, λ,

Li(w) = LNLL
i (w) + λLR

i (w). (10)

Here, λ trades off uncertainty inflation with model fit. Setting λ = 0 yields an over-confident estimate
while setting λ too high results in over-inflation(2). In practice, our NN is trained to output the
parameters,m, of the evidential distribution: mi = f(xi;w). Sincem is composed of 4 parameters,
f has 4 output neurons for every target y. We enforce the constraints on (υ, α, β) with a softplus
activation (and additional +1 added to α since α > 1). Linear activation is used for γ ∈ R.

4 Experiments

4.1 Predictive accuracy and uncertainty benchmarking

We first qualitatively compare the performance of our approach against a set of baselines on a one-
dimensional cubic regression dataset (Fig. 3). Following [20, 28], we train models on y = x3 + ε,
where ε ∼ N (0, 3) within ±4 and test within ±6. We compare aleatoric (A) and epistemic (B)
uncertainty estimation for baseline methods (left), evidence without regularization (middle), and
with regularization (right). Gaussian MLE [36] and Ensembling [28] are used as respective baseline
methods. All aleatoric methods (A) accurately capture uncertainty within the training distribution,
as expected. Epistemic uncertainty (B) captures uncertainty on OOD data; our proposed evidential
method estimates uncertainty appropriately and grows on OOD data, without dependence on sampling.
Training details and additional experiments for this example are available in Sec. S2.1.

Additionally, we compare our approach to baseline methods for NN predictive uncertainty estimation
on real world datasets used in [20, 28, 9]. We evaluate our proposed evidential regression method
against results presented for model ensembles [28] and dropout [9] based on root mean squared error
(RMSE), negative log-likelihood (NLL), and inference speed. Table 1 indicates that even though,
unlike the competing approaches, the loss function for evidential regression does not explicitly
optimize accuracy, it remains competitive with respect to RMSE while being the top performer on all
datasets for NLL and speed. To give the two baseline methods maximum advantage, we parallelize

(1)Please refer to Sec. S1.3 for derivation of the KL between two NIGs, along with a no-evidence NIG prior.
(2)Experiments demonstrating the effect of λ on a learning problem are provided in Sec. S2.1.3
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RMSE NLL Inference Speed (ms)
Dataset Dropout Ensembles Evidential Dropout Ensembles Evidential Dropout Ensemble Evidential
Boston 2.97 ± 0.19 3.28 ± 1.00 3.06 ± 0.16 2.46 ± 0.06 2.41 ± 0.25 2.35 ± 0.06 3.24 3.35 0.85
Concrete 5.23 ± 0.12 6.03 ± 0.58 5.85 ± 0.15 3.04 ± 0.02 3.06 ± 0.18 3.01 ± 0.02 2.99 3.43 0.94
Energy 1.66 ± 0.04 2.09 ± 0.29 2.06 ± 0.10 1.99 ± 0.02 1.38 ± 0.22 1.39 ± 0.06 3.08 3.80 0.87
Kin8nm 0.10 ± 0.00 0.09 ± 0.00 0.09 ± 0.00 -0.95 ± 0.01 -1.20 ± 0.02 -1.24 ± 0.01 3.24 3.79 0.97
Naval 0.01 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 -3.80 ± 0.01 -5.63 ± 0.05 -5.73 ± 0.07 3.31 3.37 0.84
Power 4.02 ± 0.04 4.11 ± 0.17 4.23 ± 0.09 2.80 ± 0.01 2.79 ± 0.04 2.81 ± 0.07 2.93 3.36 0.85
Protein 4.36 ± 0.01 4.71 ± 0.06 4.64 ± 0.03 2.89 ± 0.00 2.83 ± 0.02 2.63 ± 0.00 3.45 3.68 1.18
Wine 0.62 ± 0.01 0.64 ± 0.04 0.61 ± 0.02 0.93 ± 0.01 0.94 ± 0.12 0.89 ± 0.05 3.00 3.32 0.86
Yacht 1.11 ± 0.09 1.58 ± 0.48 1.57 ± 0.56 1.55 ± 0.03 1.18 ± 0.21 1.03 ± 0.19 2.99 3.36 0.87

Table 1: Benchmark regression tests. RMSE, negative log-likelihood (NLL), and inference speed for dropout
sampling [9], model ensembling [28], and evidential regression. Top scores for each metric and dataset are
bolded (within statistical significance), n = 5 for sampling baselines. Evidential models outperform baseline
methods for NLL and inference speed on all datasets.

their sampled inference (n = 5). Dropout requires additional multiplications with the sampled mask,
resulting in slightly slower inference compared to ensembles, whereas evidence only requires a single
forward pass and network. Training details for Table 1 are available in Sec. S2.2.

4.2 Monocular depth estimation
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Figure 3: Toy uncertainty estimation. Aleatoric
(A) and epistemic (B) uncertainty estimates on the
dataset y = x3 + ε, ε ∼ N (0, 3). Regularized
evidential regression (right) enables precise predic-
tion within the training regime and conservative
epistemic uncertainty estimates in regions with no
training data. Baseline results are also illustrated.

After establishing benchmark comparison results, in
this subsection we demonstrate the scalability of our
evidential learning approach by extending it to the
complex, high-dimensional task of depth estimation.
Monocular end-to-end depth estimation is a central
problem in computer vision and involves learning a
representation of depth directly from an RGB image
of the scene. This is a challenging learning task as the
target y is very high-dimensional, with predictions at
every pixel.

Our training data consists of over 27k RGB-to-depth,
H ×W , image pairs of indoor scenes (e.g. kitchen,
bedroom, etc.) from the NYU Depth v2 dataset [35].
We train a U-Net style NN [41] for inference and
test on a disjoint test-set of scenes(3). The final layer
outputs a single H ×W activation map in the case of
vanilla regression, dropout, and ensembling. Spatial
dropout uncertainty sampling [2, 45] is used for the
dropout implementation. Evidential regression out-
puts four of these output maps, corresponding to (γ, υ, α, β), with constraints according to Sec. 3.3.

We evaluate the models in terms of their accuracy and their predictive epistemic uncertainty on unseen
test data. Fig. 4A visualizes the predicted depth, absolute error from ground truth, and predictive
entropy across two randomly picked test images. Ideally, a strong epistemic uncertainty measure
would capture errors in the prediction (i.e., roughly correspond to where the model is making errors).
Compared to dropout and ensembling, evidential modeling captures the depth errors while providing
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Figure 4: Epistemic uncertainty in depth estimation. (A) Example pixel-wise depth predictions and uncer-
tainty for each model. (B) Relationship between prediction confidence level and observed error; a strong inverse
trend is desired. (C) Model uncertainty calibration [27]; (ideal: y = x). Inset shows calibration errors.

(3)Full dataset, model, training, and performance details for depth models are available in Sec. S3.
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Figure 5: Uncertainty on out-of-distribution (OOD) data. Evidential models estimate low uncertainty
(entropy) on in-distribution (ID) data and inflate uncertainty on OOD data. (A) Cumulative density function
(CDF) of ID and OOD entropy for tested methods. OOD detection assessed via AUC-ROC. (B) Uncertainty
(entropy) comparisons across methods. (C) Full density histograms of entropy estimated by evidential regression
on ID and OOD data, along with sample images (D). All data has not been seen during training.

clear and localized predictions of confidence. In general, dropout drastically underestimates the
amount of uncertainty present, while ensembling occasionally overestimates the uncertainty. Fig. 4B
shows how each model performs as pixels with uncertainty greater than certain thresholds are removed.
Evidential models exhibit strong performance, as error steadily decreases with increasing confidence.

Fig. 4C additionally evaluates the calibration of our uncertainty estimates. Calibration curves are
computed according to [27], and ideally follows y = x to represent, for example, that a target falls in
a 90% confidence interval approximately 90% of the time. Again, we see that dropout overestimates
confidence when considering low confidence scenarios (calibration error: 0.126). Ensembling
exhibits better calibration error (0.048) but is still outperformed by the proposed evidential method
(0.033). Results show evaluations from multiple trials, with individual trials available in Sec. S3.3.

In addition to epistemic uncertainty experiments, we also evaluate aleatoric uncertainty estimates,
with comparisons to Gaussian MLE learning. Since evidential models fit the data to a higher-order
Gaussian distribution, it is expected that they can accurately learn aleatoric uncertainty (as is also
shown in [42, 18]). Therefore, we present these aleatoric results in Sec. S3.4 and focus the remainder
of the results on evaluating the harder task of epistemic uncertainty estimation in the context of
out-of-distribution (OOD) and adversarily perturbed samples.

4.3 Out-of distribution testing

A key use of uncertainty estimation is to understand when a model is faced with test samples that
fall out-of-distribution (OOD) or when the model’s output cannot be trusted. In this subsection, we
investigate the ability of evidential models to capture increased epistemic uncertainty on OOD data,
by testing on images from ApolloScape [21], an OOD dataset of diverse outdoor driving. It is crucial
to note here that related methods such as Prior Networks in classification [32, 33] explicitly require
OOD data during training to supervise instances of high uncertainty. Our evidential method, like
Bayesian NNs, does not have this limitation and sees only in distribution (ID) data during training.

For each method, we feed in the ID and OOD test sets and record the mean predicted entropy for
every test image. Fig. 5A shows the cumulative density function (CDF) of entropy for each of the
methods and test sets. A distinct positive shift in the entropy CDFs can be seen for evidential models
on OOD data and is competitive across methods. Fig. 5B summarizes these entropy distributions
as interquartile boxplots to again show clear separation in the uncertainty distribution on OOD data.
We focus on the distribution from our evidential models in Fig. 5C and provide sample predictions
(ID and OOD) in Fig. 5D. These results show that evidential models, without training on OOD data,
capture increased uncertainty on OOD data on par with epistemic uncertainty estimation baselines.

4.3.1 Robustness to adversarial samples

Next, we consider the extreme case of OOD detection where the inputs are adversarially perturbed
to inflict error on the predictions. We compute adversarial perturbations to our test set using the
Fast Gradient Sign Method (FGSM) [16], with increasing scales, ε, of noise. Note that the purpose
of this experiment is not to propose a defense for state-of-the-art adversarial attacks, but rather to
demonstrate that evidential models accurately capture increased predictive uncertainty on samples
which have been adversarily perturbed. Fig. 6A confirms that the absolute error of all methods
increases as adversarial noise is added. We also observe a positive effect of noise on our predictive
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Figure 6: Evidential robustness under adversarial noise. Relationship between adversarial noise ε and
predictive error (A) and estimated epistemic uncertainty (B). (C) CDF of entropy estimated by evidential
regression under the presence of increasing ε. (D) Visualization of the effects of increasing adversarial pertubation
on the predictions, error, and uncertainty for evidential regression. Results of sample test-set image are shown.

uncertainty estimates in Fig. 6B. Furthermore, we observe that the entropy CDF steadily shifts
towards higher uncertainties as the noise in the input sample increases (Fig. 6C).

The robustness of evidential uncertainty against adversarial perturbations is visualized in greater
detail in Fig. 6D, which illustrates the predicted depth, error, and estimated pixel-wise uncertainty as
we perturb the input image with greater amounts of noise (left to right). Not only does the predictive
uncertainty steadily increase with increasing noise, but the spatial concentrations of uncertainty
throughout the image also maintain tight correspondence with the error.

5 Related work

Our work builds on a large history of uncertainty estimation [25, 38, 37, 19] and modelling probability
distributions using NNs [36, 4, 14, 26].

Prior networks and evidential models. A large focus within Bayesian inference is on placing
prior distributions over hierarchical models to estimate uncertainty [12, 13]. Our methodology
closely relates to evidential deep learning [42] and Prior Networks [32, 33] which place Dirichlet
priors over discrete classification predictions. However, these works either rely on regularizing
divergence to a fixed, well-defined prior [42, 46], require OOD training data [32, 31, 7, 19], or can
only estimate aleatoric uncertainty by performing density estimation [11, 18]. Our work tackles these
limitations with focus on continuous regression learning tasks where this divergence regularizer is
not well-defined, without requiring any OOD training data to estimate both aleatoric and epistemic
uncertainty.

Bayesian deep learning. In Bayesian deep learning, priors are placed over network weights
that are estimated using variational inference [26]. Approximations via dropout [9, 34, 10, 2],
ensembling [28, 40] or other approaches [5, 20] rely on expensive samples to estimate predictive
variance. In contrast, we train a deterministic NN to place uncertainty priors over the predictive
distribution, requiring only a single forward pass to estimate uncertainty. Additionally, our approach
of uncertainty estimation proved to be well calibrated and was capable of detecting OOD and
adversarial data.

6 Conclusions, limitations, and scope

In this paper, we develop a novel method for learning uncertainty in regression problems by placing
evidential priors over the likelihood output. We demonstrate combined prediction with aleatoric
and epistemic uncertainty estimation, scalability to complex vision tasks, and calibrated uncer-
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tainty on OOD data. This method is widely applicable across regression tasks including temporal
forecasting [17], property prediction [8], and control learning [1, 30]. While our method presents
several advantages over existing approaches, its primary limitations are in tuning the regularization
coefficient and in effectively removing non-misleading evidence when calibrating the uncertainty.
While dual-optimization formulations [47] could be explored for balancing regularization, we believe
further investigation is warranted to discover alternative ways to remove non-misleading evidence.
Future analysis using other choices of the variance prior distribution, such as the log-normal or the
heavy-tailed log-Cauchy distribution, will be critical to determine the effects of the choice of prior on
the estimated likelihood parameters. The efficiency, scalablity, and calibration of our approach could
enable the precise and fast uncertainty estimation required for robust NN deployment in safety-critical
prediction domains.

Broader Impact

Uncertainty estimation for neural networks has very significant societal impact. Neural networks are
increasingly being trained as black-box predictors and being placed in larger decision systems where
errors in their predictions can pose immediate threat to downstream tasks. Systematic methods for
calibrated uncertainty estimation under these conditions are needed, especially as these systems are
deployed in safety critical domains, such for autonomous vehicle control [29], medical diagnosis [43],
or in settings with large dataset imbalances and bias such as crime forecasting [24] and facial
recognition [3].

This work is complementary to a large portion of machine learning research which is continually
pushing the boundaries on neural network precision and accuracy. Instead of solely optimizing larger
models for increased performance, our method focuses on how these models can be equipped with
the ability to estimate their own confidence. Our results demonstrating superior calibration of our
method over baselines are also critical in ensuring that we can place a certain level of trust in these
algorithms and in understanding when they say “I don’t know”.

While there are clear and broad benefits of uncertainty estimation in machine learning, we believe it is
also important to recognize potential societal challenges that may arise. With increased performance
and uncertainty estimation capabilities, humans will inevitably become increasingly trusting in a
model’s predictions, as well as its ability to catch dangerous or uncertain decisions before they are
executed. Thus, it is important to continue to pursue redundancy in such learning systems to increase
the likelihood that mistakes can be caught and corrected independently.
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Supplementary Materials

S1 Derivations

S1.1 Normal Inverse-Gamma moments

We assume our data was drawn from a Gaussian with unknown mean and variance, (µ, σ2). We
probabilistically model these parameters, θ, according to:

µ ∼ N (γ, σ2υ−1) (S1)

σ2 ∼ Γ−1(α, β). (S2)

Therefore, the prior joint distribution can be written as:

p(µ, σ2︸ ︷︷ ︸
θ

| γ, υ, α, β︸ ︷︷ ︸
m

) = p(µ) p(σ2) (S3)

= N (γ, σ2υ−1) Γ−1(α, β) (S4)

=
βα
√
υ

Γ(α)
√

2πσ2

(
1

σ2

)α+1

exp

{
−2β + υ(γ − µ)2

2σ2

}
. (S5)

The first order moments of this distribution represent the maximum likelihood prediction as well as
uncertainty (both aleatoric and epistemic).

E[µ] =

∫ ∞
µ=−∞

µ p(µ) dµ = γ (S6)

E[σ2] =

∫ ∞
σ2=0

σ2 p(σ2) dσ2 (S7)

=

∫ ∞
σ=0

σ2 p(σ2) (2σ) dσ (S8)

=
β

α− 1
, ∀α > 1 (S9)

Var[µ] =

∫ ∞
µ=−∞

µ2 p(µ) dµ− (E[µ])2 (S10)

= γ2 − σ2

υ
− (E[µ])2 (S11)

= γ2 −
β
α−1

υ
− γ2 (S12)

=
β

υ(α− 1)
, ∀α > 1 (S13)

In summary,

E[µ] = γ︸ ︷︷ ︸
prediction

, E[σ2] = β
α−1︸ ︷︷ ︸

aleatoric

, Var[µ] = β
υ(α−1)︸ ︷︷ ︸

epistemic

. (S14)
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S1.2 Model evidence & Type II Maximum Likelihood Loss

In this subsection, we derive the posterior predictive or model evidence (ie. Eq. 7) of a NIG distribution.
Marginalizing out µ and σ gives our desired result:

p(yi|m) =

∫
θ

p(yi|θ)p(θ|m) dθ (S15)

=

∫ ∞
σ2=0

∫ ∞
µ=−∞

p(yi|µ, σ2)p(µ, σ2|m) dµdσ2 (S16)

=

∫ ∞
σ2=0

∫ ∞
µ=−∞

p(yi|µ, σ2)p(µ, σ2|γ, υ, α, β) dµdσ2 (S17)

=

∫ ∞
σ2=0

∫ ∞
µ=−∞

[√
1

2πσ2
exp

{
− (yi − µ)2

2σ2

}]
(S18)[

βα
√
υ

Γ(α)
√

2πσ2

(
1

σ2

)α+1

exp

{
−2β + υ(γ − µ)2

2σ2

}]
dµdσ2 (S19)

=

∫ ∞
σ2=0

βασ−3−2α

√
2π
√

1 + 1/υΓ(α)
exp

−2β + υ(yi−γ)2

1+υ

2σ2

dσ2 (S20)

=

∫ ∞
σ=0

βασ−3−2α

√
2π
√

1 + 1/υΓ(α)
exp

−2β + υ(yi−γ)2

1+υ

2σ2

 2σ dσ (S21)

=
Γ(1/2 + α)

Γ(α)

√
υ

π
(2β(1 + υ))

α (
υ(yi − γ)2 + 2β(1 + υ)

)−( 1
2 +α)

(S22)

p(yi|m) = St
(
yi; γ,

β(1 + υ)

υ α
, 2α

)
. (S23)

St
(
y;µSt, σ

2
St, υSt

)
is the Student-t distribution evaluated at y with location parameter µSt, scale

parameter σ2
St, and υSt degrees of freedom. Using this result we can compute the negative log

likelihood loss, LNLL
i , for sample i as:

LNLL
i = − log p(yi|m) (S24)

= − log

(
St
(
yi; γ,

β(1 + υ)

υ α
, 2α

))
(S25)

LNLL
i = 1

2 log
(
π
υ

)
− α log(Ω) +

(
α+ 1

2

)
log((y − γ)2υ + Ω) + log

(
Γ(α)

Γ(α+ 1
2 )

)
(S26)

where Ω = 2β(1 + υ).

S1.3 KL-divergence of the Normal Inverse-Gamma

The KL-divergence between two Normal Inverse-Gamma functions is given by [44]:

KL
(
p(µ, σ2|γ1, υ1, α1, β1) || p(µ, σ2|γ2, υ2, α2, β2)

)
(S27)

= KL
(
NIG(γ1, υ1, α1, β1) || NIG(γ2, υ2, α2, β2)

)
(S28)

=
1

2

α1

β1
(µ1 − µ2)2υ2 +

1

2

υ2

υ1
− 1

2
+ α2 log

(
β1

β2

)
− log

(
Γ(α1)

Γ(α2)

)
(S29)

+ (α1 − α2)Ψ(α1)− (β1 − β2)
α1

β1
(S30)

Γ(·) is the Gamma function and Ψ(·) is the Digamma function. For zero evidence, both α = 0
and υ = 0. To compute the KL divergence between one NIG distribution and another with zero
evidence we can set either υ2 = α2 = 0 (i.e., reverse-KL) in which case, Γ(0) is not well defined, or
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υ1 = α1 = 0 (i.e. forward-KL) which causes a divide-by-zero error of υ1. In either approach, the
KL-divergence between an arbitrary NIG and one with zero evidence cannot be evaluated.

Instead, we briefly consider a naive alternative which can be obtained by considering an ε amount
of evidence, where ε is a small constant (instead of strictly 0-evidence). This approach yields a
well-defined KL-divergence (with fixed γ, β at the consequence of a hyper-sensitive ε parameter.

KL
(
NIG(γ, υ, α, β) || NIG(γ, ε, 1 + ε, β)

)
(S31)

=
1

2

1 + ε

υ
− 1

2
− log

(
Γ(α)

Γ(1 + ε)

)
+ (α− (1 + ε))Ψ(α) (S32)

In Fig. S1.3 we compare the performance of the KL-divergence regularizer compared to our more
direct evidence regularizer, for several realizations of the regularization coefficient, λ. We observed
extreme sensitivity to the setting of ε for different datasets such that we could not achieve the desired
regularizing effect for any regularization amount, λ. Unless otherwise stated, all results were obtained
using our direct evidence regularizer instead (Eq. 9).

S2 Benchmark regression tasks

S2.1 Cubic toy examples

S2.1.1 Dataset and experimental setup

The training set consists of training examples drawn from y = x3 + ε, where ε ∼ N (0, 3) in the
region −4 ≤ x ≤ 4, whereas the test data is unbounded (we show in the region −6 ≤ x ≤ 6).
This problem setup is identical to that presented in [20, 28]. All models consisted of 100 neurons
with 3 hidden layers and were trained to convergence. The data presented in Fig. S1 illustrates
the estimated epistemic uncertainty and predicted mean accross the entire test set. Sampling based
models [5, 9, 28] used n = 5 samples. The evidential model used λ = 0.01. All models were trained
with the Adam optimizer η =5e-3 for 5000 iterations and a batch size of 128.

S2.1.2 Baselines
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Figure S1: Epistemic uncertainty estimation baselines on the dataset y = x3 + ε, ε ∼ N (0, 3).

S2.1.3 Impact of the evidential regularizer

In the following experiment, we demonstrate the importance of augmenting the training objective
with our evidential regularizer LR as introduced in Sec. 3.3. Fig. S2 provides quantitative results on
epistemic uncertainty estimation after training on the same regression problem presented in S2.1 with
different realizations of the regularization coefficients, λ. We show the performance of our ability to
calibrate uncertainty on OOD data is heavily related to our regularizer. As we decrease our regularizer
weight, uncertainty on OOD examples decays to zero. Stronger regularization inflates the uncertainty
(λ = 0.01 is a good choice for this problem) while aleatoric uncertainty is maintained constant.
Please refer to Fig. 3 for the regularization effect on both aleatoric and epistemic uncertainty.

S2.1.4 Disentanglement of aleatoric and epistemic uncertainty

In the following experiment, we provide results to suggest that the evidential regularizer is capable
of disentangling aleatoric and epistemic uncertainties by capturing incorrect evidence. Specifically,
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Figure S2: Impact of regularization strength on epistemic uncertainty estimates. Epistemic uncertainty
estimates on the dataset y = x3+ε, ε ∼ N (0, 3) for evidential regression models regularized with the evidential
regularizer LR (A) or with the KL divergence (B) between the inferred NIG and another with zero evidence, for
varying regularization coefficients λ.

we construct a synthetic toy dataset with high data noise (aleatoric uncertainty) in the center of
the in-distribution region. Rather than using the L1 error in the regularization term, as in previous
experiments, we use regularize the standard score and estimate epistemic and aleatoric uncertainty
(Fig. S3). This analysis suggests that the method is capable of disentangling epistemic and aleatoric
uncertainties in a region that is in-distribution but has high data noise.
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Figure S3: Disentangled uncertainties. Epistemic and aleatoric uncertainty estimates on a synthetic dataset
based on y = x3, where data noise increases towards the center of the in-distribution region. The evidential
regularizer LR is calculated based on the standard score.

S2.2 Benchmark regression problems

S2.2.1 Datasets and experimental setup

This subsection describes the setup to create Table 1. We follow an identical experimental setup
and training process as presented in [20]. All dataset features are normalized to have zero mean
and unit standard deviation. Features with no variance are only normalized to have zero mean. The
same normalization process is also performed on the target variables; however, this is undone at
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inference time such that predictions are in the original scale of the targets. Datasets are split randomly
into training and testing sets a total of 20 times. Each time we retrain the model and compute the
desired metrics (RMSE, NLL, and speed). The results presented in the table represent the average
and standard error across all 20 runs for every method and dataset. Following the lead of [28], we
also directly compare against the other training methods by directly using their reported results since
they followed an identical training procedure.

S3 Depth estimation evaluations

S3.1 Experimental details

We evaluate depth estimation on the NYU-Depth-v2 dataset [35]. For every image scan in the dataset
we fill in the missing holes in the depth using the Levin Colorization method. The resulting depth map
is converted to be proportional to disparity by taking its inverse. This is common in depth learning
literature as it ensures that far away objects result in numerically stable neural network outputs (very
large depths have close to zero disparity). Objects closer than 1/255 meters to the camera would
therefore be clipped due to the uint8 restriction on image precision. The resulting images are saved
and used for supervising the learning algorithm. Training, validation, and test sets were randomly
split (80-10-10) with no overlap in scans.

All trained depth models have a U-Net [41] backbone, with five convolutional and pooling blocks
down (and then back up). The input and target images had shape (160, 128) with inputs having 3
feature maps (RGB), while targets only had a single feature map (disparity). The dropout variants
were trained with spatial dropout [45] over the convolutional blocks (p = 0.1). Evidential models
additionally had four output target maps, one map corresponding to each evidential parameter
γ, υ, α, β, with activations as described in 3.3.

All models were trained with the following hyperparmeters: batch size of 32, Adam optimization
with learning rate 5e-5, over 60000 iterations. The best model according to validation set RMSE is
saved and used for testing. Evidential models additionally had λ = 0.1. Each model was trained 3
times from random initialization to produce all presented results.

S3.2 Depth estimation performance metrics

Table S1 summarizes the size and speed of all models. Evidential models contain significantly fewer
trainable parameters than ensembles (where the number of parameters scales linearly with the size
of the ensemble). Since evidential regression models do not require sampling in order to estimate
their uncertainty, their forward-pass inference times are also significantly more efficient. Finally, we
demonstrate comparable predictive accuracy (through RMSE and NLL) to the other models.

N # Parameters Inference Speed RMSE NLL
Absolute Relative Seconds Relative

Evidential (Ours) - 7,846,776 1.00 0.003 1.00 0.024 ± 0.032 -1.128 ± 0.290
Spatial Dropout 2 7,846,657 1.00 0.028 10.20 0.033 ± 0.037 -0.564 ± 0.231
Spatial Dropout 5 7,846,657 1.00 0.031 11.48 0.031 ± 0.033 -1.227 ± 0.374
Spatial Dropout 10 7,846,657 1.00 0.037 13.69 0.035 ± 0.042 -1.139 ± 0.379
Spatial Dropout 25 7,846,657 1.00 0.065 23.99 0.032 ± 0.035 -1.137 ± 0.327
Spatial Dropout 50 7,846,657 1.00 0.107 39.36 0.032 ± 0.036 -1.110 ± 0.381

Ensembles 2 15,693,314 2.00 0.005 1.94 0.026 ± 0.032 -1.080 ± 3.334
Ensembles 5 39,233,285 5.00 0.010 3.72 0.023 ± 0.027 -1.077 ± 0.298
Ensembles 10 78,466,570 10.00 0.019 6.82 0.025 ± 0.038 -0.980 ± 0.298
Ensembles 25 196,166,425 25.00 0.045 16.45 0.022 ± 0.029 -1.000 ± 0.259
Ensembles 50 392,332,850 50.00 0.112 41.26 0.022 ± 0.031 -0.996 ± 0.275

Table S1: Depth estimation performance metrics. Comparison of different uncertainty estimation algorithms
and predictive performance on an unseen test set. Dropout and ensembles were sampled N times on parallel
threads. The evidential method outperforms all other algorithms in terms of space (#Parameters) and inference
speed while maintaining competitive RMSE and NLL.

S3.3 Epistemic uncertainty estimation on depth

Fig. S4 shows individual trial runs for each method on RMSE cutoff plots as summarized in Fig. 4B.
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Fig. S5 shows individual trial runs for each method on their respective calibration plots as summarized
in Fig. 4C.

Fig. S6 shows individual trial runs for each method on their respective entropy (uncertainty) CDF
as a function of the amount of adversarial noise. We present the evidential portion of this figure in
Fig. 6C, but also provide baseline results here.
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Figure S4: Relationship between prediction confidence level and observed error for different uncertainty
estimation methods. A strong inverse trend is desired to demonstrate that the uncertainty estimates effectively
capture accuracy. Plots show results from depth estimation task.
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Figure S5: Uncertainty calibration plots for depth estimation. Calibration of epistemic uncertainty estimates
for dropout, ensembling, and evidential methods, assessed as the relationship between expected and observed
predictive confidence levels. Perfect calibration corresponds to the line y = x (black).
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Figure S6: Effect of adversarial noise on uncertainty estimates. Cumulative distribution functions (CDF) of
entropy (uncertainty) estimated by dropout, ensembling, and evidential regression methods, under the presence
of increasing adversarial noise ε.

S3.4 Aleatoric uncertainty estimation on depth

Fig. S7 compares the evidential aleatoric uncertainty to those obtained by Gaussian likelihood
optimization in several domains with high data uncertainty (mirror reflections and poor illumination).
The results between both methods are in strong agreement, identifying mirror reflections and dark
regions without visible geometry as sources of high uncertainty. These results are expected since
evidential models fit the data to a higher-order Gaussian distribution and therefore it is expected that
they can accurately learn aleatoric uncertainty (as is also shown in [42, 18]). While the main text
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Figure S7: Aleatoric uncertainty in depth. Visualizing predicted aleatoric uncertainty in challenging reflection
and illumination scenes. Comparison between evidential and [25] show strong semantic agreement.

focuses on the more challenging problem of epistemic uncertainty estimation (especially on OOD
data), we provide these sample aleatoric uncertainty examples for here for depth as supplemental
material.
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