LIST OF FIGURES

Figure 1.1	Thesis research process
Figure 1.2	Discontinuity in complexity, risk, and cost at each TRL 39
Figure 1.3	Thesis roadmap
Figure 3.1	Overview of the scientific method by Gauch
Figure 4.1	The five flight-qualified SPHERES nano-satellites
Figure 4.2	SPHERES operational concept
Figure 4.3	SPHERES satellite
Figure 4.4	SPHERES avionics overview
Figure 4.5	SPHERES software layers
Figure 4.6	SPHERES operations overview
Figure 4.7	SPHERES nano-satellite structural design
Figure 4.8	Iterative research process for SPHERES
Figure 4.9	GSP iterative research loop
Figure 4.10	MIT SSL on-site iterative research loop
Figure 4.11	MIT SSL off-site iterative research loop
Figure 4.12	ISS iterative research process
Figure 4.13	SPHERES programs composition
Figure 4.14	SPHERES satellites initialization
Figure 4.15	Accelerometer and gyroscope measurements in micro gravity 140
Figure 4.16	Global metrology system time-of-flight distance measurements \ldots 142
Figure 4.17	Measuring the state vector with the layered metrology system \ldots 143
Figure 4.18	Differential measurements between two satellites
Figure 4.19	Sample real-time and post-test data telemetry algorithms 146
Figure 4.20	High priority scheduling of system timing and controller interrupts . 152
Figure 4.21	Test synchronization via communications
Figure 4.22	Test synchronization to within 1ms
Figure 4.23	SPHERES GUI for ground-based operations
Figure 4.24	ISS astronaut interface

Figure 4.25	SCS interfaces to user code, DSP/BIOS, and hardware
Figure 4.26	GSP simulation window
Figure 4.27	SPHERES satellite expansion port face (without cover)
Figure 4.28	SPHERES expansion port design overview
Figure 4.29	SPHERES -X "docking face"
Figure 4.30	FLASH memory map
Figure 5.1	The iterative research process
Figure 5.2	Smoothing TRL transitions
Figure 5.3	Design principles application strategy
Figure 5.4	General trend of cost J using cost function 5.1
Figure 5.5	Achieving effective iterations though flexible scheduling
Figure 5.6	Value curves for ISS unique resources
Figure 5.7	Two paths to flight operations
Figure 6.1	Z-axis inertia estimate from ground-based tests
Figure 6.2	Sample results of docking algorithms at the MIT SSL
Figure 6.3	Five satellite TPF maneuvers at the MSFC Flat Floor
Figure 6.5	Artist's conception of MOSR aboard the ISS
Figure 6.4	Two and three satellite tethered setups at the MSFC Flat Floor 265
Figure 6.6	Fractional cost of enabling multiple areas of study
Figure 6.7	KC-135 iterative research loop
Figure 6.8	MSFC Flat Floor iterative research loops
Figure 6.9	Effectiveness of iterations with SPHERES
Figure 6.10	SPHERES Functional Requirements
Figure 7.1	SPHERES operations aboard the KC-135 RGA
Figure B.1	ZARM drop tower
Figure B.2	NASA Neutral Buoyancy Laboratory
Figure B.3	NASA KC-135 airplane and flight path
Figure B.4	Space Shuttle payload bay and middeck
Figure B.5	The ISS on October 2002
Figure B.6	US Skylab
Figure B.7	The MIR Space Station

Figure C.1	Antarctic research stations
Figure C.2	WHOI research vessels Knorr (left) and Alvin
Figure D.1	The ISS at US Core Complete
Figure D.2	US Destiny laboratory
Figure D.3	US Centrifuge Accommodation Module
Figure D.4	US Truss Attachment Points (4)
Figure D.5	Japanese Experiment Module
Figure D.6	Columbus Module
Figure E.2	MODE Structural Test Article with Alpha joint
Figure E.1	MODE Experiment Support Module w/ Fluid Test Article 411
Figure E.3	DLS handhold and foot restraint
Figure E.4	MACE operations on shuttle mid-deck
Figure E.5	MACE Experiment Support Module
Figure E.6	MACE operations aboard the ISS
Figure F.1	SPHERES avionics overview
Figure F.2	Power sub-system functional block diagram
Figure F.3	Propulsion spike and hold timing diagram
Figure F.5	Propulsion spike and hold circuit
Figure F.4	Propulsion avionics functional block diagram
Figure F.6	SMT375 functional block diagram
Figure F.7	Metrology sub-system functional block diagram
Figure F.8	FPGA firmware design
Figure F.9	US/IR boards functional block diagram
Figure F.10	Ultrasound amplification schematic
Figure F.11	Communications sub-system functional block diagram 472
Figure F.12	Expansion port functional block diagram
Figure F.13	Laptop communications functional block diagram
Figure F.14	Metrology beacon functional block diagram
Figure F.15	Beacon tester functional block diagram
Figure F.16	Expansion port beacon functional block diagram
Figure F.17	Expansion port tether functional block diagram

Figure G.1	Satellite software components
Figure G.2	SPHERES program development sequence
Figure G.3	Boot loader transfer protocol
Figure G.4	Boot loader transfer protocol error handling
Figure G.5	Boot loader command/reply packets
Figure G.6	Boot loader first data packet structure
Figure G.7	Boot loader general data packets structure
Figure G.8	Master program state diagram
Figure G.9	Satellite boot loader state diagram
Figure G.10	Satellite boot loader general algorithm
Figure G.11	SPHERES Core Software overview
Figure G.12	SCS threads
Figure G.13	SCS real-time clocks
Figure G.14	SCS controller module threads and general algorithm
Figure G.15	SCS controller state diagram
Figure G.16	SCS propulsion module threads
Figure G.18	Propulsion modulation options
Figure G.17	Propulsion module timing diagram
Figure G.19	SCS communications module threads
Figure G.20	Communications data reception process
Figure G.21	Communications data transmission process
Figure G.22	SCS metrology module threads
Figure G.23	SCS metrology module general algorithms
Figure G.24	SCS metrology treads scheduling
Figure G.25	SCS housekeeping module threads
Figure G.26	SCS GSP module threads
Figure H.1	DR2000 packet structure
Figure H.2	SPHERES packet structure (n=32)
Figure H.3	Packet transmission sequence
Figure H.4	Time Division Multiple Access scheme
Figure H.5	Packet acknowledgement sequence example (1 lost packet)

Figure H.6	General purpose command structure	574
Figure H.7	Initialization packet structure	. 578
Figure H.8	Telemetry packet structure	586