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1 Introduction
In previous lectures, we saw how regularization can be used to restore the well-posedness of the
empirical risk minimization (ERM) problem. We also derived algorithms that use regularization to
impose smoothness assumptions on the solution space (as in the case of Tikhonov regularization) or
introduce additional structure by confining the solution space to low dimensional manifolds (manifold
regularization). In this lecture, we will examine the use of regularization for the achievement of an
alternative objective, namely sparsity.

During the last ten years, there has been an increased interest in the general field of sparsity.
Such interest comes not only from the Machine Learning community, but also from other scientific
areas. For example, in Signal Processing sparsity is examined mainly in the context of compressive
sensing [CRT06, Dono06] and the so called basis pursuit [CDS96]. In the Statistics literature, basis
pursuit is known as the lasso [Tibs96]. Strong connections also exist with sparse coding [OlFi97]
and independent component analysis [HyOj00].

In these notes, we discuss sparsity from a regularization point of view, and only refer to these
connections as they arise from within this framework. Initially, we motivate the use of sparsity
and emphasize on the problem of variable selection. Then, we present the formulation of the spar-
sity based regularization problem, develop tractable approximations to it, and justify them using
a geometric interpretation of sparsity. Finally, after discussion of some of the properties of these
approximations, we describe an algorithm for the solution of the sparsity based regularization prob-
lem.

2 Motivation
The widespread availability of very high dimensional data sets makes their efficient manipulation
from Machine Learning algorithms and applications very challenging. Challenges can be both com-
putational (lack of storage and processing resources) and theoretical (lack of algorithms with per-
formance that scales well to such high dimensions).

In order to be able to cope with these challenges, we seek to find a parsimonious model for
the data, requiring a number of parameters much smaller than its dimension. In a sense we try
to achieve a compression of the data, by removing redundancy between the various measurements
originally available and keeping only those that are the most relevant. However, we try to do so
in a data driven way, by using the data itself to determine our selection strategy, thus building a
data driven representation of the data. We hope that we will be able to efficiently manipulate this
new, compressed representation and that from the compression there will be no essential loss of
information, as we assume that the variables selected carry almost all the relevant information for
our task.

This process serves another, dual purpose. Specifically, we seek to develop a representation that is
interpretable. We want the data driven selection strategy to help us understand the model underlying
the data. In a sense, the high dimensionality of the original data set reflects our ignorance about
the particular problem we are dealing with. Due to this ignorance, we believe that the full model is
highly redundant and can be explained only by a small number of the most relevant variables, which
our data driven scheme helps select. From this perspective, our problem is one of variable selection.
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We provide here an instructive example, to further illustrate the above two points. Assume that
we have n patients from 2 groups, which may be for example two different diseases. For each patient,
we take p measurements, corresponding to the expression of p genes, with n typically being in the
order of tens and p of thousands. Then, we want to build a data driven compressed representation
of this data set, and use it to achieve two distinct goals. The first goal is to learn a classification
rule that will predict the occurrence of the disease in future patients. A second goal is to study the
variable selection procedure defined by the above representation in order to detect which particular
genes are the more relevant for this classification, thus probably also responsible for the disease.
Therefore, we see that there is a dual, prediction-selection goal. Ideally, the number of the selected
relevant genes will be much smaller than the original p genes.

It is important to note that the procedure we seek is not just a dimensionality reduction or feature
selection procedure. Viewing our problem as a variable selection problem helps us understand the
difference. Consider, for example, the principal component analysis (PCA) algorithm, which is very
popular for dimensionality reduction. PCA returns directions in the feature space which, in some
sense, capture most of the information (variability) of the data set. However, these directions are
defined as functions of the original p measurements. Thus, the resulting projection space does not
tell us which the most relevant from the original measurements are, unless it happens that all the
axes of this space are aligned with some axes of the original space, something generally unlikely.
Therefore, PCA is not a variable selection algorithm and variable selection is a different procedure
from feature selection.

3 Strategies for variable selection
So far, we have not defined what we mean by “relevant” variables, neither have we provided any
method for their selection. In this section, we explore some possibilities. Note that in the following,
for brevity we will only refer to the problem of classification. However, all results presented are
directly applicable to the case of regression.

An obvious procedure would be to construct all the possible subsets of the p measurements with
cardinality up to some N , and use them to train a classifier. Then, the best subset is defined by a
joint consideration of size and error, and the most relevant variables are the ones included in this set.
Although such an algorithm would return the “optimal” solution, it is computationally intractable.
Indeed, the number of all possible subsets is equal to 2p, exponential on the number of measurements
p, and the problem itself is NP-complete. As we assume that p is very large for our data sets, this
procedure is not feasible.

There are three different classes of methods that can be used to approximate the above scheme,

1. filter methods: such methods rank the quality of each measurement with regards to the classi-
fication task separately. Then, they use these rankings to select a variable subset of size N , by
taking the N variables with the highest rankings. This scheme usually results in sub-optimal
subsets as it assumes that all variables are independent, which is not generally true.

2. wrapper methods: methods of this class use heuristics to perform the search in the space
of subsets of variables. A well-known member of this class is the is the recursive feature
elimination (RFE) algorithm. Due to the use of heuristics, wrapper methods again are not
guaranteed to return a good result.

3. embedded methods: these methods derive their name from the fact that the selection procedure
is embedded in the training phase. This is in contrast to the previous two classes, where firstly
a training phase is executed for all the candidate subsets and then a selection is made based
on the results (rankings) of this phase. This is the class of methods we will examine in detail
in the following, and from which the notion of sparsity will arise naturally.

10-2



We will not cover filter and wrapper methods in these notes. For more details on these two
classes of methods, a comprehensive review can be found in [GuEl03].

4 Embedded methods
For the rest of these notes, we restrict our analysis to the finite dimensional case. Before we proceed,
we formalize some notation we have already been using to some extent. Our data consists of the
measurement matrix X and the labels Y , where

X =

 x1
1 . . . . . . . . . xp1
...

...
...

...
...

x1
n . . . . . . . . . xpn

 , Y =

 y1
...
yn

 . (1)

Thus, X is a n× p matrix and Y a n× 1 column vector. In the above, n is the number of examples
and p is the number of measurements (or variables) available for each example, finite by assumption.
Therefore, the i-th row of X corresponds to the measurements for the i-th example, and yi is the
label for that example. Depending on whether we study the classification or regression case, we have
that yi ∈ {−1, 1} or yi ∈ R, respectively, for i = 1, . . . , n. Finally, we use Xj to denote the j-th
column of X, j = 1, . . . , p. We assume that p� n.

4.1 Sparsity
For our analysis, we will assume for the rest that we have a linear model, where the output of our
learning algorithm is a linear combination of the p variables,

f (x) =
p∑
i=1

βixi = 〈β, x〉 . (2)

This framework allows us to define sparsity. Specifically, a function such as the above is called sparse
if most of the coefficients βi are zero. Informally, this means that we discard all variables for which
βi = 0 and therefore our variable selection is the small set of variables for which βi 6= 0.

To find f , we need to specify β. From the above formulation, we have that

Y = Xβ. (3)

This is an ill-posed problem. Specifically, by selecting using ERM a function of the above form,
intuitively we expect it to overfit the data if we only discard few variables, and to oversmooth if we
discard too many variables. As in previous lectures, in order to restore the well-posedness of the
ERM problem and allow its solution to generalize, we can introduce regularization on the sparsity
of the solution. In the next subsection, we examine how this can be done.

4.2 `0 regularization
The natural approach towards regularizing the sparsity of the solution of the ERM is to use the
number of non-zero coefficients as a penalty. We define the `0-norm (using the term norm here is
an abuse of terminology, as ‖· ‖0 does not satisfy all of the properties of a norm)

‖β‖0 = #{i = 1, . . . , p | βi 6= 0}. (4)

Thus, ‖· ‖0 can be seen as a measure of complexity of each function f . Then, we can regularize our
problem by minimizing

min
β∈RP

 1
n

n∑
j=1

V (yj , 〈β, xj〉) + λ ‖β‖0

 (5)
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instead of minimizing only the empirical risk.
Minimizing (5) is not computationally tractable. This problem is as difficult as the one we

considered in section 3, where we needed to select the optimal of all possible subsets of measurements.
The only change in this case is that the optimality criterion now also includes the regularization
term. Furthermore, ‖· ‖0 is not a convex function. In fact, as we will see in subsection 4.4, the `0
norm is in a sense the most concave of all `p norms we can use for regularization. However, the
minimizer of (5) is our optimal solution and, if available, can be used as a gold standard for the
evaluation of other algorithms.

Due to the above undesired properties, we need to consider approximations to `0 regularization.
There are two main approaches to approximating the loss function of (5):

1. using a convex relaxation, or

2. using a greedy scheme.

The second approach is easier computationally. However, as it is a local method, a mistake at
the beginning of its running may render it unable to converge to a good solution without paying
a considerable price in running time (or to converge at all). On the other hand, using a convex
relaxation constitutes a global method. Thus, although the corresponding minimization problem is
more difficult to solve, the method always converges to a good solution, depending of course on the
quality of the approximation. For these reasons, in the following we only cover the convex relaxation
approach.

4.3 Convex relaxation of `0 regularization
Assuming that V (y, f (x)) is convex, we can get a convex relaxation of (5) by replacing the `0 norm
with some approximation that is convex. A natural such approximation is the `1 norm,

‖β‖1 =
p∑
i=1

∣∣βi∣∣ , (6)

which is a convex function of β. Then, the approximation to `0 regularization takes the form

min
β∈RP

 1
n

n∑
j=1

V (yj , 〈β, xj〉) + λ ‖β‖1

 . (7)

which constitutes the `1 regularization.
For the rest of our analysis, we restrict our attention to the case where V (y, f (x)) is the square

loss. Then, the minimization problem of (7) is called basis pursuit in the Signal Processing literature
and lasso in the Statistics literature. The minimization problem of (7) takes the form

min
β∈RP

{
‖Y −Xβ‖2n + λ ‖β‖1

}
, (8)

where

‖Y −Xβ‖2n =
1
n

n∑
i=1

(yi − 〈β, xi〉)2 (9)

is the square loss.
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4.4 Geometric interpretation of sparsity based regularization
A question that naturally arises from the above considerations is why lasso is a good approximation
to `0 regularization. After all, we could have used Tikhonov regularization instead, in which case
our minimization problem would become

min
β∈RP

{
‖Y −Xβ‖2n + λ ‖β‖22

}
, (10)

where

‖β‖22 =
p∑
i=1

∣∣βi∣∣2 . (11)

In this case, we would again obtain a solution of the form

fs (x) =
p∑
i=1

βixi = 〈βs, x〉 . (12)

We will use a geometric argument to show that most of the coefficients of fs (or at least no less
than those of the solution we obtain from lasso) are nonzero. We consider the case when p = 2 for
visualization purposes, although our conclusions also hold for higher dimensions. For the various p-
norms, we write the corresponding minimization problem in a constrained minimization form instead
of the lagrangian form we have used in (8) and (10),

min
β∈RP

{
‖β‖pp

}
, (13)

subject to ‖Y −Xβ‖2n ≤ R2. (14)

We refer to figure 1. From the expressions of the `1 and `2 norms, it is easy to see that the
corresponding `1 and `2 balls have the shape drawn at the figure. Furthermore, we can see that the
`0 “ball” corresponds to the segments of the β1 and β2 axes between 0 and the points of intersection
with the `1 and `2 balls. Finally, all balls `p with 0 < p < 1 will be curves between `1 and `0 with
positive curvature. Therefore, we verify that that `1 is the closest approximation to `0 that is also
convex, and that `0 is the most concave of all p-norms as stated in subsection 4.2.

Constraint (14) corresponds to a beam of lines parallel to the line defined by the solution of the
linear system Y = Xβ and at distance −R ≤ d ≤ R from it, as shown in the figure (and assuming
that the linear system does not have a unique solution). Then, from (13), to solve the minimization
problem graphically we need to find the `p ball of minimum radius that intersects with at least
one of the lines of the beam. We see immediately that, for the `1 ball, this point of intersection
coincides with one of the points where the ball intersects with the β1 or β2 axes. At these points,
we have β2 = 0 or β1 = 0, respectively. To the contrary, for the `2 ball, the point of intersection is
not on either of the two axes, unless the solution of the linear system Y = Xβ is the vertical line
β1 = constant or the horizontal line β2 = constant. Therefore the minimizer of the constrained
optimization problem (13), (14) for the case p = 1 always has one of its two coordinates equal to 0.
On the other hand, for the case p = 2, none of the two coordinates of the solution is zero, except for
the two special cases we mentioned. We note that these two cases correspond to the PCA algorithm
returning directions aligned with the axes of the original measurement space, as mentioned in section
2.

We can see that the same analysis holds for all other balls of norms `p with p > 1. We conclude
that the convex approximation of `0 regularization using the `1 norm produces solutions β that are
at least as sparse as those produced by approximations using any other norm `p with p > 1, and at
most times much sparser.
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Figure 1: Geometric interpretation of sparsity based regularization for various `p norms.

4.5 Considerations about `1 regularization
Generally, there are reasonably good conditions under which `0 and `1 regularization are equivalent,
which can be seen to an extent from the geometric analysis we performed above. However, such
equivalence is not trivial. This is expected, considering that the original problem of `0 regularization
is NP-complete, as we mentioned in section 4.2.

It is also worth making an observation about the regularization parameter λ. In the cases of
both `0 and `1 regularization, λ controls the sparsity of the resulting function. Thus, λ can be used
to control the trade-off between overfitting and sparsity, in a way similar to the case of Tikhonov
regularization where λ can control the trade-off between overfitting and oversmoothing.

A theoretical result from the domain of compressive sensing provides a bound on the distance of
the solution βλ obtained from `1 regularization with regularization parameter λ from the true β∗.
Specifically, if Y = Xβ∗ + ξ, where X and Y are as defined above, ξ ∼ N (0, σ2I) is a noise term,
and the true β∗ has at most s nonzero coefficients with s ≤ n

2 , then∥∥βλ − β∗∥∥ ≤ Csσ2 log p. (15)

The constant C in the above bound depends on the matrix X.
We can also draw an interesting parallel between `1 regularization and support vector machines

(SVM). By replacing in (8) the square loss with the hinge loss and the `1 penalty with the `2 penalty,
we can see that the SVM algorithm also enforces sparsity, however on the examples and not on the
variables of the problem. SVM can be seen, then, as an example selection problem, with the solution
being a weighted combination of the examples.

However, there is a significant difference between `1 regularization and the SVM algorithm.
Unlike the latter, in `1 regularization we do not get a minimization functional that depends on the
data only through inner products. As a result, we cannot apply the “kernel trick”, and thus we
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cannot use `1 regularization as derived above to perform nonlinear variable selection. It is possible
that we can still use `1 regularization to learn sparse linear combinations of nonlinear mappings
of the original variables. However, we no longer enjoy the benefits of the theoretical framework
of reproducing kernel Hilbert spaces, as is the case in the SVM algorithm. Furthermore, we are
constrained to use only finite dimensional dictionaries of nonlinear mappings of the original variables.
As an additional disadvantage of this approach, the resulting function will no longer be interpretable
with regards to the original variables, and thus will not provide us with insights on the problem,
unlike the “linear” `1 regularization. As the interpretability of the results is a significant aspect of
sparsity based regularization, this is a serious disadvantage. In general, nonlinear variable selection
is an open problem and constitutes an interesting research direction.

Another noteworthy behavior of `1 regularization arises when, in the data set, we have variables
that are strongly correlated. In this case, from each group of correlated variables, the algorithm
selects only one of them. This can create problems in the interpretability of the result as, between
two variables of similar behavior and relevance, one is selected and another is rejected. On the other
hand, `1 regularization in this case acts in a way that reduces redundancy, and therefore produces
a result that is better from a compression point of view.

Finally, we note that, in the case of the square loss, we have transformed the original non-
convex minimization problem of (5) to the convex minimization problem of (8). This is a significant
improvement, however our optimization problem remains nonlinear and therefore a closed-form
solution cannot be obtained. An even more serious problem is that, although the functional in the
minimization problem is convex, it is not strictly convex. As a result, it does not have a unique
solution. The existence of multiple solutions with same prediction but different selection properties
makes their interpretation problematic.

5 Solving the `1 regularization problem
For the solution of the nonlinear, (not strictly) convex minimization problem of (8), many optimiza-
tion approaches can be used. Examples of “off-the-shelf” optimization algorithms that can be used
include interior point methods, homotopy methods and coordinate descent.

In this section, we use convex analysis tools to develop a powerful, iterative optimization algo-
rithm, that is well suited to our specific problem. We firstly describe the iteration of the algorithm.
Specifically, initially we set βλ0 = 0. Then, the iteration step of the algorithm continues as

βλt = Sλ
[
bλt−1 + τXT

(
Y −Xbλt−1

)]
(16)

where we observe that the term XT
(
Y −Xbλt−1

)
is a gradient descent term. In the above iteration,

τ is a normalization constant used to ensure that τ ‖X‖ ≤ 1, and Sλ is defined component-wise as
follows

Sλ(βi) =

 βi + λ/2 if βi < −λ/2
0 if |βi| ≤ λ/2
βi − λ/2 if βi < λ/2

(17)

Sλ is plotted in figure 2. We can see that Sλ acts as an adaptive threshold, setting very small values
to 0 and slightly decreasing all other.

The algorithm can be stopped when either a maximum number of iterations tmax or the required
precision have been reached. The complexity of the algorithm is O

(
tp2
)
for each value λ for which

it is run. The above algorithm is easy to implement, but can be very expensive computationally.
To speedup the algorithm, we can use an adaptive step-size or continuation methods. Moreover,
when we need to run the algorithm for multiple values of λ, we make the following two intuitive
observations:

1. close values of λ are expected to have nearby solutions, and
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Figure 2: Thresholding function Sλ for iterative thresholding algorithm.

2. solutions obtained for larger λ are more sparse and hence “closer” to the initialization βλ0 = 0.

Therefore, when the algorithm must be run for multiple values of λ, the two observations above
suggest that the following heuristic methods be followed to speed-up its execution:

1. arrange the λ values from the larger to the smaller, and run the algorithm for the various
values in this order, and

2. for each λ, initialize the iteration of the algorithm from the solution of the immediately larger
value of λ instead of 0 (except of course for the largest λ).
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