Approximate Inference using MCMC

9.520 Class 22

Ruslan Salakhutdinov
BCS and CSAIL, MIT

Plan

1. Introduction/Notation.
2. Examples of successful Bayesian models.
3. Basic Sampling Algorithms.
4. Markov chains.
5. Markov chain Monte Carlo algorithms.

References/Acknowledgements

- Chris Bishop's book: Pattern Recognition and Machine Learning, chapter 11 (many figures are borrowed from this book).
- David MacKay's book: Information Theory, Inference, and Learning Algorithms, chapters 29-32.
- Radford Neals's technical report on Probabilistic Inference Using Markov Chain Monte Carlo Methods.
- Zoubin Ghahramani's ICML tutorial on Bayesian Machine Learning: http://www.gatsby.ucl.ac.uk/~zoubin/ICML04-tutorial.html
- Ian Murray's tutorial on Sampling Methods: http://www.cs.toronto.edu/~murray/teaching/

Basic Notation

$$
\begin{aligned}
P(x) & \text { probability of } \mathrm{x} \\
P(x \mid \theta) & \text { conditional probability of } \mathrm{x} \text { given } \theta \\
P(x, \theta) & \text { joint probability of } \mathrm{x} \text { and } \theta
\end{aligned}
$$

Bayes Rule:

$$
P(\theta \mid x)=\frac{P(x \mid \theta) P(\theta)}{P(x)}
$$

where

$$
P(x)=\int P(x, \theta) d \theta \quad \text { Marginalization }
$$

I will use probability distribution and probability density interchangeably. It should be obvious from the context.

Inference Problem

Given a dataset $\mathcal{D}=\left\{x_{1}, \ldots, x_{n}\right\}$:
Bayes Rule:

$$
P(\theta \mid \mathcal{D})=\frac{P(D \mid \theta) P(\theta)}{P(\mathcal{D})} \quad \begin{array}{ll}
P(\mathcal{D} \mid \theta) & \text { Likelihood function of } \theta \\
& P(\theta) \\
\text { Prior probability of } \theta \\
& P(\theta \mid \mathcal{D})
\end{array} \begin{aligned}
& \text { Posterior distribution over } \theta
\end{aligned}
$$

Computing posterior distribution is known as the inference problem. But:

$$
P(\mathcal{D})=\int P(\mathcal{D}, \theta) d \theta
$$

This integral can be very high-dimensional and difficult to compute.

Prediction

$$
P(\theta \mid \mathcal{D})=\frac{P(D \mid \theta) P(\theta)}{P(\mathcal{D})} \quad \begin{array}{ll}
P(\mathcal{D} \mid \theta) & \text { Likelihood function of } \theta \\
P(\theta) & \text { Prior probability of } \theta \\
& P(\theta \mid \mathcal{D})
\end{array} \begin{aligned}
& \text { Posterior distribution over } \theta
\end{aligned}
$$

Prediction: Given \mathcal{D}, computing conditional probability of x^{*} requires computing the following integral:

$$
\begin{aligned}
P\left(x^{*} \mid \mathcal{D}\right) & =\int P\left(x^{*} \mid \theta, \mathcal{D}\right) P(\theta \mid \mathcal{D}) d \theta \\
& =\mathbb{E}_{P(\theta \mid \mathcal{D})}\left[P\left(x^{*} \mid \theta, \mathcal{D}\right)\right]
\end{aligned}
$$

which is sometimes called predictive distribution.
Computing predictive distribution requires posterior $P(\theta \mid \mathcal{D})$.

Model Selection

Compare model classes, e.g. \mathcal{M}_{1} and \mathcal{M}_{2}. Need to compute posterior probabilities given \mathcal{D} :

$$
P(\mathcal{M} \mid \mathcal{D})=\frac{P(\mathcal{D} \mid \mathcal{M}) P(\mathcal{M})}{P(\mathcal{D})}
$$

where

$$
P(\mathcal{D} \mid \mathcal{M})=\int P(\mathcal{D} \mid \theta, \mathcal{M}) P(\theta, \mathcal{M}) d \theta
$$

is known as the marginal likelihood or evidence.

Computational Challenges

- Computing marginal likelihoods often requires computing very highdimensional integrals.
- Computing posterior distributions (and hence predictive distributions) is often analytically intractable.
- In this class, we will concentrate on Markov Chain Monte Carlo (MCMC) methods for performing approximate inference.
- First, let us look at some specific examples:
- Bayesian Probabilistic Matrix Factorization
- Bayesian Neural Networks
- Dirichlet Process Mixtures (last class)

Bayesian PMF

User

Features

We have N users, M movies, and integer rating values from 1 to K.
Let $r_{i j}$ be the rating of user i for movie j, and $U \in R^{D \times N}, V \in R^{D \times M}$ be latent user and movie feature matrices:

$$
R \approx U^{\top} V
$$

Goal: Predict missing ratings.

Bayesian PMF

Probabilistic linear model with Gaussian observation noise. Likelihood:

$$
p\left(r_{i j} \mid u_{i}, v_{j}, \sigma^{2}\right)=\mathcal{N}\left(r_{i j} \mid u_{i}^{\top} v_{j}, \sigma^{2}\right)
$$

Gaussian Priors over parameters:

$$
\begin{aligned}
p\left(U \mid \mu_{U}, \Lambda_{U}\right) & =\prod_{i=1}^{N} \mathcal{N}\left(u_{i} \mid \mu_{u}, \Sigma_{u}\right) \\
p\left(V \mid \mu_{V}, \Lambda_{V}\right) & =\prod_{i=1}^{M} \mathcal{N}\left(v_{i} \mid \mu_{v}, \Sigma_{v}\right)
\end{aligned}
$$

Conjugate Gaussian-inverse-Wishart priors on the user and movie hyperparameters $\Theta_{U}=\left\{\mu_{u}, \Sigma_{u}\right\}$ and $\Theta_{V}=\left\{\mu_{v}, \Sigma_{v}\right\}$.

Hierarchical Prior.

Bayesian PMF

Predictive distribution: Consider predicting a rating $r_{i j}^{*}$ for user i and query movie j :
$p\left(r_{i j}^{*} \mid R\right)=\iint p\left(r_{i j}^{*} \mid u_{i}, v_{j}\right) \underbrace{p\left(U, V, \Theta_{U}, \Theta_{V} \mid R\right)}_{\text {Posterior over parameters and hyperparameters }} d\{U, V\} d\left\{\Theta_{U}, \Theta_{V}\right\}$

Exact evaluation of this predictive distribution is analytically intractable.

Posterior distribution $p\left(U, V, \Theta_{U}, \Theta_{V} \mid R\right)$ is complicated and does not have a closed form expression.

Need to approximate.

Bayesian Neural Nets

Regression problem: Given a set of i.i.d observations $\mathbf{X}=\left\{\mathbf{x}^{n}\right\}_{n=1}^{N}$ with corresponding targets $\mathcal{D}=\left\{t^{n}\right\}_{n=1}^{N}$.

Likelihood:

$$
p(\mathcal{D} \mid \mathbf{X}, \mathbf{w})=\prod_{n=1}^{N} \mathcal{N}\left(t^{n} \mid y\left(\mathbf{x}^{n}, \mathbf{w}\right), \beta^{2}\right)
$$

The mean is given by the output of the neural network:

$$
y_{k}(\mathbf{x}, \mathbf{w})=\sum_{j=0}^{M} w_{k j}^{2} \sigma\left(\sum_{i=0}^{D} w_{j i}^{1} x_{i}\right)
$$

where $\sigma(x)$ is the sigmoid function.
Gaussian prior over the network parameters: $p(\mathbf{w})=\mathcal{N}\left(0, \alpha^{2} I\right)$.

Bayesian Neural Nets

Likelihood:

$$
p(\mathcal{D} \mid \mathbf{X}, \mathbf{w})=\prod_{n=1}^{N} \mathcal{N}\left(t^{n} \mid y\left(\mathbf{x}^{n}, \mathbf{w}\right), \beta^{2}\right)
$$

Gaussian prior over parameters:

$$
p(\mathbf{w})=\mathcal{N}\left(0, \alpha^{2} I\right)
$$

Posterior is analytically intractable:

$$
p(\mathbf{w} \mid \mathcal{D}, \mathbf{X})=\frac{p(\mathcal{D} \mid \mathbf{w}, \mathbf{X}) p(\mathbf{w})}{\int p(\mathcal{D} \mid \mathbf{w}, \mathbf{X}) p(\mathbf{w}) d \mathbf{w}}
$$

Remark: Under certain conditions, Radford Neal (1994) showed, as the number of hidden units go to infinity, a Gaussian prior over parameters results in a Gaussian process prior for functions.

Undirected Models

x is a binary random vector with $x_{i} \in\{+1,-1\}$:

$$
p(\mathbf{x})=\frac{1}{\mathcal{Z}} \exp \left(\sum_{(i, j) \in E} \theta_{i j} x_{i} x_{j}+\sum_{i \in V} \theta_{i} x_{i}\right) .
$$

where \mathcal{Z} is known as partition function:

$$
\mathcal{Z}=\sum_{\mathbf{x}} \exp \left(\sum_{(i, j) \in E} \theta_{i j} x_{i} x_{j}+\sum_{i \in V} \theta_{i} x_{i}\right) .
$$

If x is 100 -dimensional, need to sum over 2^{100} terms.
The sum might decompose (e.g. junction tree). Otherwise we need to approximate.

Remark: Compare to marginal likelihood.

Monte Carlo

For most situations we will be interested in evaluating the expectation:

$$
\mathbb{E}[f]=\int f(z) p(z) d z
$$

We will use the following notation: $p(z)=\frac{\tilde{p}(z)}{\mathcal{Z}}$.
We can evaluate $\tilde{p}(\mathbf{z})$ pointwise, but cannot evaluate \mathcal{Z}.

- Posterior distribution: $P(\theta \mid \mathcal{D})=\frac{1}{P(\mathcal{D})} P(\mathcal{D} \mid \theta) P(\theta)$
- Markov random fields: $P(z)=\frac{1}{z} \exp (-E(z))$

Simple Monte Carlo

General Idea: Draw independent samples $\left\{z^{1}, \ldots, z^{n}\right\}$ from distribution $p(\mathbf{z})$ to approximate expectation:

$$
\mathbb{E}[f]=\int f(z) p(z) d z \approx \frac{1}{N} \sum_{n=1}^{N} f\left(z^{n}\right)=\hat{f}
$$

Note that $\mathbb{E}[f]=\mathbb{E}[\hat{f}]$, so the estimator \hat{f} has correct mean (unbiased). The variance:

$$
\operatorname{var}[\hat{f}]=\frac{1}{N} \mathbb{E}\left[(f-\mathbb{E}[f])^{2}\right]
$$

Remark: The accuracy of the estimator does not depend on dimensionality of z.

Simple Monte Carlo

In general:

$$
\int f(z) p(z) d z \approx \frac{1}{N} \sum_{n=1}^{N} f\left(z^{n}\right), \quad z^{n} \sim p(z)
$$

Predictive distribution:

$$
\begin{aligned}
P\left(x^{*} \mid \mathcal{D}\right) & =\int P\left(x^{*} \mid \theta, \mathcal{D}\right) P(\theta \mid \mathcal{D}) d \theta \\
& \approx \frac{1}{N} \sum_{n=1}^{N} P\left(x^{*} \mid \theta^{n}, \mathcal{D}\right), \quad \theta^{n} \sim p(\theta \mid \mathcal{D})
\end{aligned}
$$

Problem: It is hard to draw exact samples from $p(z)$.

Basic Sampling Algorithm

How to generate samples from simple non-uniform distributions assuming we can generate samples from uniform distribution.

Define: $h(y)=\int_{-\infty}^{y} p(\hat{y}) d \hat{y}$
Sample: $z \sim U[0,1]$.
Then: $y=h^{-1}(z)$ is a sample from $p(y)$.

Problem: Computing cumulative $h(y)$ is just as hard!

Rejection Sampling

Sampling from target distribution $p(z)=\tilde{p}(z) / \mathcal{Z}_{p}$ is difficult. Suppose we have an easy-to-sample proposal distribution $q(z)$, such that $k q(z) \geq \tilde{p}(z), \forall z$.

Sample z_{0} from $q(z)$.
Sample u_{0} from Uniform $\left[0, k q\left(z_{0}\right)\right]$

The pair $\left(z_{0}, u_{0}\right)$ has uniform distribution under the curve of $k q(z)$.

If $u_{0}>\tilde{p}\left(z_{0}\right)$, the sample is rejected.

Rejection Sampling

Probability that a sample is accepted is:

$$
\begin{aligned}
p(\text { accept }) & =\int \frac{\tilde{p}(z)}{k q(z)} q(z) d z \\
& =\frac{1}{k} \int \tilde{p}(z) d z
\end{aligned}
$$

The fraction of accepted samples depends on the ratio of the area under $\tilde{p}(z)$ and $k q(z)$.
Hard to find appropriate $q(z)$ with optimal k.
Useful technique in one or two dimensions. Typically applied as a subroutine in more advanced algorithms.

Importance Sampling

Suppose we have an easy-to-sample proposal distribution $q(z)$, such that $q(z)>0$ if $p(z)>0$.

$$
\begin{aligned}
\mathbb{E}[f] & =\int f(z) p(z) d z \\
& =\int f(z) \frac{p(z)}{q(z)} q(z) d z \\
& \approx \frac{1}{N} \sum_{n} \frac{p\left(z^{n}\right)}{q\left(z^{n}\right)} f\left(z^{n}\right), \quad z^{n} \sim q(z)
\end{aligned}
$$

The quantities $w^{n}=p\left(z^{n}\right) / q\left(z^{n}\right)$ are known as importance weights. Unlike rejection sampling, all samples are retained. But wait: we cannot compute $p(z)$, only $\tilde{p}(z)$.

Importance Sampling

Let our proposal be of the form $q(z)=\tilde{q}(z) / \mathcal{Z}_{q}$:

$$
\begin{array}{rlr}
\mathbb{E}[f] & =\int f(z) p(z) d z=\int f(z) \frac{p(z)}{q(z)} q(z) d z=\frac{\mathcal{Z}_{q}}{\mathcal{Z}_{p}} \int f(z) \frac{\tilde{p}(z)}{\tilde{q}(z)} q(z) d z \\
& \approx \frac{\mathcal{Z}_{q}}{\mathcal{Z}_{p}} \frac{1}{N} \sum_{n} \frac{\tilde{p}\left(z^{n}\right)}{\tilde{q}\left(z^{n}\right)} f\left(z^{n}\right)=\frac{\mathcal{Z}_{q}}{\mathcal{Z}_{p}} \frac{1}{N} \sum_{n} w^{n} f\left(z^{n}\right), \quad z^{n} \sim q(z)
\end{array}
$$

But we can use the same importance weights to approximate $\frac{\mathcal{Z}_{p}}{\mathcal{Z}_{q}}$:

$$
\frac{\mathcal{Z}_{p}}{\mathcal{Z}_{q}}=\frac{1}{Z_{q}} \int \tilde{p}(z) d z=\int \frac{\tilde{p}(z)}{\tilde{q}(z)} q(z) d z \quad \approx \frac{1}{N} \sum_{n} \frac{\tilde{p}\left(z^{n}\right)}{\tilde{q}\left(z^{n}\right)}=\frac{1}{N} \sum_{n} w^{n}
$$

Hence:

$$
\mathbb{E}[f] \approx \frac{1}{N} \sum_{n} \frac{w^{n}}{\sum_{n} w^{n}} f\left(z^{n}\right) \quad \text { Consistent but biased. }
$$

Problems

If our proposal distribution $q(z)$ poorly matches our target distribution $p(z)$ then:

- Rejection Sampling: almost always rejects
- Importance Sampling: has large, possibly infinite, variance (unreliable estimator).

For high-dimensional problems, finding good proposal distributions is very hard. What can we do?

Markov Chain Monte Carlo.

Markov Chains

A first-order Markov chain: a series of random variables $\left\{z^{1}, \ldots, z^{N}\right\}$ such that the following conditional independence property holds for $n \in\left\{z^{1}, \ldots, z^{N-1}\right\}:$

$$
p\left(z^{n+1} \mid z^{1}, \ldots, z^{n}\right)=p\left(z^{n+1} \mid z^{n}\right)
$$

We can specify Markov chain:

- probability distribution for initial state $p\left(z^{1}\right)$.
- conditional probability for subsequent states in the form of transition probabilities $T\left(z^{n+1} \leftarrow z^{n}\right) \equiv p\left(z^{n+1} \mid z^{n}\right)$.

Remark: $T\left(z^{n+1} \leftarrow z^{n}\right)$ is sometimes called a transition kernel.

Markov Chains

A marginal probability of a particular state can be computed as:

$$
p\left(z^{n+1}\right)=\sum_{z^{n}} T\left(z^{n+1} \leftarrow z^{n}\right) p\left(z^{n}\right)
$$

A distribution $\pi(z)$ is said to be invariant or stationary with respect to a Markov chain if each step in the chain leaves $\pi(z)$ invariant:

$$
\pi(z)=\sum_{z^{\prime}} T\left(z \leftarrow z^{\prime}\right) \pi\left(z^{\prime}\right)
$$

A given Markov chain may have many stationary distributions. For example: $T\left(z \leftarrow z^{\prime}\right)=I\left\{z=z^{\prime}\right\}$ is the identity transformation. Then any distribution is invariant.

Detailed Balance

A sufficient (but not necessary) condition for ensuring that $\pi(z)$ is invariant is to choose a transition kernel that satisfies a detailed balance property:

$$
\pi\left(z^{\prime}\right) T\left(z \leftarrow z^{\prime}\right)=\pi(z) T\left(z^{\prime} \leftarrow z\right)
$$

A transition kernel that satisfies detailed balance will leave that distribution invariant:

$$
\begin{aligned}
\sum_{z^{\prime}} \pi\left(z^{\prime}\right) T\left(z \leftarrow z^{\prime}\right) & =\sum_{z^{\prime}} \pi(z) T\left(z^{\prime} \leftarrow z\right) \\
& =\pi(z) \sum_{z^{\prime}} T\left(z^{\prime} \leftarrow z\right)=\pi(z)
\end{aligned}
$$

A Markov chain that satisfies detailed balance is said to be reversible.

Recap

We want to sample from target distribution $\pi(z)=\tilde{\pi}(z) / \mathcal{Z}$ (e.g. posterior distribution).

Obtaining independent samples is difficult.

- Set up a Markov chain with transition kernel $T\left(z^{\prime} \leftarrow z\right)$ that leaves our target distribution $\pi(z)$ invariant.
- If the chain is ergodic, i.e. it is possible to go from every state to any other state (not necessarily in one move), then the chain will converge to this unique invariant distribution $\pi(z)$.
- We obtain dependent samples drawn approximately from $\pi(z)$ by simulating a Markov chain for some time.

Ergodicity: There exists K, for any starting $z, T^{K}\left(z^{\prime} \leftarrow z\right)>0$ for all $\pi\left(z^{\prime}\right)>0$.

Metropolis-Hasting Algorithm

A Markov chain transition operator from current state z to a new state z^{\prime} is defined as follows:

- A new 'candidate' state z^{*} is proposed according to some proposal distribution $q\left(z^{*} \mid z\right)$, e.g. $\mathcal{N}\left(z, \sigma^{2}\right)$.
- A candidate state x^{*} is accepted with probability:

$$
\min \left(1, \frac{\tilde{\pi}\left(z^{*}\right)}{\tilde{\pi}(z)} \frac{q\left(z \mid z^{*}\right)}{q\left(z^{*} \mid z\right)}\right)
$$

- If accepted, set $z^{\prime}=z^{*}$. Otherwise $z^{\prime}=z$, or the next state is the copy of the current state.

Note: no need to know normalizing constant \mathcal{Z}.

Metropolis-Hasting Algorithm

We can show that M-H transition kernel leaves $\pi(z)$ invariant by showing that it satisfies detailed balance:

$$
\begin{aligned}
\pi(z) T\left(z^{\prime} \leftarrow z\right) & =\pi(z) q\left(z^{\prime} \mid z\right) \min \left(1, \frac{\pi\left(z^{\prime}\right)}{\pi(z)} \frac{q\left(z \mid z^{\prime}\right)}{q\left(z^{\prime} \mid z\right)}\right) \\
& =\min \left(\pi(z) q\left(z^{\prime} \mid z\right), \pi\left(z^{\prime}\right) q\left(z \mid z^{\prime}\right)\right) \\
& =\pi\left(z^{\prime}\right) \min \left(\frac{\pi(z)}{\pi\left(z^{\prime}\right)} \frac{) q\left(z^{\prime} \mid z\right)}{q\left(z \mid z^{\prime}\right)}, 1\right) \\
& =\pi\left(z^{\prime}\right) T\left(z \leftarrow z^{\prime}\right)
\end{aligned}
$$

Note that whether the chain is ergodic will depend on the particulars of π and proposal distribution q.

Metropolis-Hasting Algorithm

Using Metropolis algorithm to sample from Gaussian distribution with proposal $q\left(z^{\prime} \mid z\right)=\mathcal{N}(z, 0.04)$.
accepted (green), rejected (red).

Choice of Proposal

Proposal distribution:
$q\left(z^{\prime} \mid z\right)=\mathcal{N}\left(z, \rho^{2}\right)$.
ρ large - many rejections
ρ small - chain moves too slowly

The specific choice of proposal can greatly affect the performance of the algorithm.

Gibbs Sampler

Consider sampling from $p\left(z_{1}, \ldots, z_{N}\right)$.

$$
\text { Initialize } z_{i}, i=1, \ldots, N
$$

For $t=1, \ldots, T$
Sample $z_{1}^{t+1} \sim p\left(z_{1} \mid z_{2}^{t}, \ldots, z_{N}^{t}\right)$
Sample $z_{2}^{t+1} \sim p\left(z_{2} \mid z_{1}^{t+1}, x_{3}^{t}, \ldots, z_{N}^{t}\right)$

Sample $z_{N}^{t+1} \sim p\left(z_{N} \mid z_{1}^{t+1}, \ldots, z_{N-1}^{t+1}\right)$

Gibbs sampler is a particular instance of $\mathrm{M}-\mathrm{H}$ algorithm with proposals $p\left(z_{n} \mid \mathbf{z}_{i \neq n}\right) \rightarrow$ accept with probability 1. Apply a series (componentwise) of these operators.

Gibbs Sampler

Applicability of the Gibbs sampler depends on how easy it is to sample from conditional probabilities $p\left(z_{n} \mid \mathbf{z}_{i \neq n}\right)$.

- For discrete random variables with a few discrete settings:

$$
p\left(z_{n} \mid \mathbf{z}_{i \neq n}\right)=\frac{p\left(z_{n}, \mathbf{z}_{i \neq n}\right)}{\sum_{z_{n}} p\left(z_{n}, \mathbf{z}_{i \neq n}\right)}
$$

The sum can be computed analytically.

- For continuous random variables:

$$
p\left(z_{n} \mid \mathbf{z}_{i \neq n}\right)=\frac{p\left(z_{n}, \mathbf{z}_{i \neq n}\right)}{\int p\left(z_{n}, \mathbf{z}_{i \neq n}\right) d z_{n}}
$$

The integral is univariate and is often analytically tractable or amenable to standard sampling methods.

Bay D D N E

Remember predictive distribution?: Consider predicting a rating $r_{i j}^{*}$ for user i and query movie j :

$$
p\left(r_{i j}^{*} \mid R\right)=\iint p\left(r_{i j}^{*} \mid u_{i}, v_{j}\right) \underbrace{p\left(U, V, \Theta_{U}, \Theta_{V} \mid R\right)}_{\text {Posterior over parameters and hyperparameters }} d\{U, V\} d\left\{\Theta_{U}, \Theta_{V}\right\}
$$

Use Monte Carlo approximation:

$$
p\left(r_{i j}^{*} \mid R\right) \approx \frac{1}{N} \sum_{n=1}^{N} p\left(r_{i j}^{*} \mid u_{i}^{(n)}, v_{j}^{(n)}\right)
$$

The samples $\left(u_{i}^{n}, v_{j}^{n}\right)$ are generated by running a Gibbs sampler, whose stationary distribution is the posterior distribution of interest.

Bay D D E

Monte Carlo approximation:

$$
p\left(r_{i j}^{*} \mid R\right) \approx \frac{1}{N} \sum_{n=1}^{N} p\left(r_{i j}^{*} \mid u_{i}^{(n)}, v_{j}^{(n)}\right)
$$

The conditional distributions over the user and movie feature vectors are Gaussians \rightarrow easy to sample from:

$$
\begin{aligned}
p\left(u_{i} \mid R, V, \Theta_{U}, \alpha\right) & =\mathcal{N}\left(u_{i} \mid \mu_{i}^{*}, \Sigma_{i}^{*}\right) \\
p\left(v_{j} \mid R, U, \Theta_{U}, \alpha\right) & =\mathcal{N}\left(v_{j} \mid \mu_{j}^{*}, \Sigma_{j}^{*}\right)
\end{aligned}
$$

The conditional distributions over hyperparameters also have closed form distributions \rightarrow easy to sample from.

Netflix dataset - Bayesian PMF can handle over 100 million ratings.

MCMC: Main Problems

Main problems of MCMC:

- Hard to diagnose convergence (burning in).
- Sampling from isolated modes.

More advanced MCMC methods for sampling in distributions with isolated modes:

- Parallel tempering
- Simulated tempering
- Tempered transitions

Hamiltonian Monte Carlo methods (make use of gradient information).

Nested Sampling, Coupling from the Past, many others.

Deterministic Methods

- Laplace Approximation
- Bayesian Information Criterion (BIC)
- Variational Methods: Mean-Field, Loopy Belief Propagation along with various adaptations.
- Expectation Propagation.
- ...

