Hierarchical Learning Machines: Derived Kernels and the Neural Response

Andre Wibisono Lorenzo Rosasco

MIT 9.520 Class 16

April 5, 2010

Hierarchical/Deep Learning

Goal: to introduce a mathematical counterpart to the visual cortex model described in the previous two lectures.

- Describe a recursive definition of a similarity kernel.
- Describe theoretical analyses.

S. Smale, L. Rosasco, J. Bouvrie, A. Caponnetto, and T. Poggio. "Mathematics of the Neural Response", Foundations of Computational Mathematics (2010) 10: 67–91 and

J. Bouvrie, T. Poggio, L. Rosasco, S. Smale. A. Wibisono. "Properties of Hierarchical Learning Machines", in preparation.

Background

- Oerived Kernels and the Neural Response
- Onnection to Neuroscience
- Theoretical Analysis

Biologically Inspired Hierarhical Learning Machines

- Human-Machine Comparison: Chomsky's poverty of the stimulus argument: biological organisms can learn complex concepts and tasks from extraordinarily small empirical samples.
- *Hierarchical organization is the key?* circuits found in the human brain facilitate robust learning from few examples via the discovery of *invariances*, while promoting circuit modularity and reuse of redundant sub-circuits, leading also to greater energy and space efficiency.

When and why is a hierarchical architecture preferred?

- Invariance versus selectivity.
- Omputational properties.
- Adaptive tuning.
- Sample complexity.

For tasks that can be decomposed into a hierarchy of parts, how can we show that a supervised classifier trained using a hierarchical feature map will generalize better than an off-the-shelf non-hierarchical alternative?

Hierarchica Learning: Empirical Motivation

9-class digits problem, nearest neighbor classifier, Euclidean distance vs. 3-layer derived distance (u = 12, v = 20, 500 templates/layer, 3-pixel image translations).

Background

② Derived Kernels and the Neural Response

- Onnection to Neuroscience
- Theoretical Analysis

Towards a Theory

We will borrow concepts and operations underlying the visual cortex model.

The ingredients needed to define the derived kernel consist of:

- A finite *architecture* of nested domains. We'll call them patches.
- A suitable family of *function spaces* defined on each patch.
- A set of *transformations* defined on patches.
- A set of *templates* which connect the mathematical model to a real world setting.

An Architecture of Patches

We first consider an architecture composed of *three* layers of patches: u, v and Sq in \mathbb{R}^2 , with $u \subset v \subset Sq$,

We consider a function space on Sq, denoted by

 $\operatorname{Im}(Sq) = \{f: Sq \to [0,1]\},\$

as well as the function spaces ${\rm Im}(u),\,{\rm Im}(v)$ defined on subpatches $u,\,v,$ respectively.

Functions can be interpreted as grey scale images when working with a vision problem for example.

Next, we assume a set H_u of *transformations* that are maps from the smallest patch to the next larger patch

$$h: u \to v.$$

Similarly H_v with $h: v \to Sq$.

The sets of transformations are assumed to be finite.

These transformations act on the *domain* of a function (image).

Examples of transformations are primarily translations, but also scalings and rotations...

Translations and Scalings

we have transformations of the form $h=h_{eta}h_{lpha}$ with

$$h_{\alpha}(x) = \alpha x$$
, and $h_{\beta}(x') = x' + \beta$,

where $\alpha \in \mathbb{R}$ and $\beta \in \mathbb{R}^2$ is such that $h_{\beta}h_{\alpha}(u) \subset v$.

Interpretation

In the vision interpretation, a translation h can be thought of as moving the image over the "receptive field" \boldsymbol{v}

Figure: A transformation "restricts" an image to a specific patch.

Template sets are finite, $T_u \subset \text{Im}(u)$ and $T_v \subset \text{Im}(v)$

- they are image patches sampled from some set of unlabeled images.
- link the mathematical development to real world problems.

The space of images can be endowed with a "mother" probability measure ρ . Templates can be seen as images frequently encountered in the early stages of life.

Given a set X, a function $K: X \times X \to \mathbb{R}$ is a reproducing kernel if it is a symmetric and positive definite kernel, i.e.

$$\sum_{i,j=1}^{n} \alpha_i \alpha_j K(x_i, x_j) \ge 0,$$

for any $n \in \mathbb{N}$, $x_1, \ldots, x_n \in X$ and $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$.

Dot Products and Feature map

Inner product kernels are an instance of reproducing kernels:

$$K(x, x') = \langle \Phi(x), \Phi(x') \rangle$$

is a reproducing kernel.

We assume $K(x, x) \neq 0$ for all $x \in X$ and let

$$\widehat{K}(x,x') = \frac{K(x,x')}{\sqrt{K(x,x)K(x',x')}}.$$

Clearly \widehat{K} is a reproducing kernel and $\widehat{K}(x,x) \equiv 1$ for all $x \in X$.

- Allows interpretation of and comparison between different instances.
- Is nice for correspondence with a distance.

To make sense of the normalization we rule out the functions such that ${\cal K}(f,f)$ is zero.

This assumption is quite natural in the context of images:

If K(f, f) is zero, the responses of f is identically zero at all possible templates by definition:

"one can't see the contents of the image".

Construction

We'll give a bottom-up description of a three layer architecture before giving the general recursive definition.

Consider a normalized non-negative valued reproducing kernel on ${\rm Im}(u) \times {\rm Im}(u)$ denoted by $\widehat{K}_u(f,g)$.

example

Consider the inner product of square integrable functions on \boldsymbol{u}

$$K_u(f,g) = \int_u f(x)g(x)dx.$$

DEFINITION: Neural Response

We define the *neural response* of
$$f$$
 at t :

$$N_v(f)(t) = \max_{h \in H} \widehat{K}_u(f \circ h, t),$$
where $f \in \text{Im}(v)$, $t \in T_u$ and $H = H_u$.

NOTE: f is not the whole image here.

By denoting with $D = |T_u|$ the cardinality of the template set T_u , we can interpret the neural response as a vector in \mathbb{R}^D ,

$$f \in \operatorname{Im}(v) \longmapsto (N_v(f)(t_1), N_v(f)(t_2), \dots, N_v(f)(t_D)).$$

This is just the collection of best responses of each template within the *sub-patch* $f \in \text{Im}(v)$.

If K_u is the Euclidean dot-product, and H_u is all translations: compare to normalized cross-correlation.

The *derived kernel* is just the corresponding inner product in $L^2(T_u) = \mathbb{R}^{|T_u|}$ between neural responses, normalized by $\frac{1}{|T_u|}$

The derived kernel on $\operatorname{Im}(v) \times \operatorname{Im}(v)$ is defined as

$$K_v(f,g) = \langle N_v(f), N_v(g) \rangle_{L^2(T_u)},$$

and can be normalized to obtain the kernel \widehat{K}_v .

This is the correlation in the pattern of similarities to templates.

We now repeat the process:

second layer neural response

$$N_{Sq}(f)(t) = \max_{h \in H} \widehat{K}_v(f \circ h, t),$$

where $f \in \text{Im}(Sq), t \in T_v$ and $H = H_v$.

derived kernel on $Im(Sq) \times Im(Sq)$

$$K_{Sq}(f,g) = \langle N_{Sq}(f), N_{Sq}(g) \rangle_{L^2(T_v)},$$

where $\langle \cdot, \cdot \rangle_{L^2(T_v)}$ is the L^2 inner product.

As before, we normalize K_{Sq} to obtain the final derived kernel \hat{K}_{Sq} .

Recursive Definition

For a general n layer architecture $v_1 \subset v_2 \subset \cdots \subset v_n = Sq$, let $K_n = K_{v_n}$ and $H_n = H_{v_n}$, $T_n = T_{v_n}$.

Definition

Given a non-negative valued, normalized, reproducing kernel \hat{K}_1 , the *m*-layer derived kernel \hat{K}_m , $m = 2, \ldots, n$, is obtained by normalizing

$$K_m(f,g) = \langle N_m(f), N_m(g) \rangle_{L^2(T_{m-1})}$$

where

$$N_m(f)(t) = \max_{h \in H} \widehat{K}_{m-1}(f \circ h, t), \qquad t \in T_{m-1}$$

with $H = H_{m-1}$.

Neural Response

The normalized neural response provides a *representation* for any function $f \in \text{Im}(Sq)$.

$$\underbrace{f\in \mathrm{Im}(Sq)}_{\text{input}}\longmapsto \underbrace{\widehat{N}_{Sq}(f)\in L^2(T)=\mathbb{R}^{|T|}}_{\text{output}},$$
 with $T=T_{n-1}.$

The normalization for N is that implied by the normalization of K:

$$\widehat{N}(f) = \frac{N(f)}{\|N(f)\|_{L^2(T)}}$$

where
$$||x||_{L^2(T)} = \sqrt{\langle x, x \rangle_{L^2(T)}} = \sqrt{\frac{1}{|T|} \langle x, x \rangle_{\mathbb{R}^{|T|}}}.$$

The derived kernel naturally defines a derived distance d on the space of images.

$$d^2(f,g) = \| \widehat{N}(f) - \widehat{N}(g) \|^2 = 2 \left(1 - \widehat{K}(f,g) \right)$$

(since $\widehat{K}(f, f) = 1$ for all f) Clearly, as the kernel "similarity" approaches its maximum value of 1, the distance goes to 0.

Background

Ø Derived Kernels and the Neural Response

O Connection to Neuroscience

Theoretical Analysis

Section 2 Sec

The two key steps in the definition of neural response correspond to simple and complex cells in the visual cortex (and the CBCL model):

- S: inner products with the templates.
- C: max over the set of translations.

Given an initial kernel K_u , let

$$N_{S1}(f \circ h)(t) = K_u(f \circ h, t)$$

with $f \in \text{Im}(v)$, $h \in H_u$ and $t \in T_u$.

 $N_{S1}(f \circ h)(t)$ corresponds to the response of an S1 cell with template t and receptive field $h \circ u$.

The operations underlying the definition of S1 can be thought of as "normalized convolutions".

The neural response is given by

$$N_{C1}(f)(t) = \max_{h \in H} \{ N_{S1}(f \circ h)(t) \}$$

with $f \in \text{Im}(v)$, $H = H_u$ and $t \in T_u$ so that $N_{C1} : \text{Im}(v) \to \mathbb{R}^{|T_u|}$.

 $N_{C1}(f)(t)$ corresponds to the response of a C1 cell with template t and receptive field corresponding to v.

Background

- Oerived Kernels and the Neural Response
- Onnection to Neuroscience

O Extensions

5 Theoretical Analysis

One can consider more general tuning functions, in fact any reproducing kernel $K\colon \ell^2\times\ell^2\to\mathbb{R},$

$$K(x, x') = \langle \Phi(x), \Phi(x') \rangle_{\mathcal{F}}$$

Gaussian Tuning

$$G(f,g) = e^{-\gamma d^2(f,g)},$$

where we used the (derived) distance.

Pooling Functions

One can consider more general pooling functions,

$$\Psi \colon \mathbb{R}^* = \bigcup_{n \in \mathbb{N}} \mathbb{R}^n \to \mathbb{R}.$$

Name	Expression
Average	$\Psi(\alpha(h)) = \frac{1}{ H } \sum_{h \in H} \alpha(h)$
ℓ^1	$\Psi(\alpha(h)) = \sum_{h \in H} \alpha(h) $
Max	$\Psi(\alpha(h)) = \max_{h \in H} \alpha(h)$
ℓ^∞	$\Psi(\alpha(h)) = \max_{h \in H} \alpha(h) $

At some layer m, given $\Pi_m = (N_m(t_1), \ldots, N_m(t_D))$ we can consider more sophisticated templates learning schemes.

- Sparse Coding
- Non-negative matrix factorization
- Kernel PCA
- Diffusion Wavelets
- Laplacian Eigen-Maps

Many methods can be written as:

$$\|\Pi - PB\|^2 + \lambda \mathsf{pen}(B, P)$$

Definition (Neural Response & Derived Kernel)

Let $N_1 \colon \text{Im}(v_1) \to \ell_2$ be a feature map and \mathcal{T}_1 be a set of templates associated to $\Phi \circ N_1$. Then

$$N_m(f)(\tau) = \Psi(\langle \Phi(N_{m-1}(f \circ h)), \tau \rangle),$$

with $f \in \text{Im}(v_m)$, $\tau \in \mathcal{T}_{m-1}$, $H = H_{m-1}$ and \mathcal{T}_{m-1} is a set of templates associated to $\Phi \circ N_{m-1}$. Moreover,

$$K_m(f,g) = K(N_m(f), N_m(g))$$

- **CBCL Model**. Max pooling, Gaussian tuning (or normalized dot product). Templates are sampled patches.
- Convolutional Neural Nets. Pooling

$$\Psi = \ell^1 \circ \sigma,$$

where ℓ^1 is the sum of the absolute values and σ is a sigmoid function. Tuning function, is typically a (normalized) inner product.

• Neural Nets. Take $v_1 = v_2 = \cdots = v_n$. Sigmoid Pooling functions. Tuning given by inner product.

Background

- Oerived Kernels and the Neural Response
- Onnection to Neuroscience
- **•** Theoretical Analysis

Formulating the model in careful, mathematical terms was the first step towards a comprehensive theory.

Now we can start looking at invariance, discrimination, and other properties that emerge from our definitions:

- Range compression
 - Loss of dynamic range
- Invariance of the neural response
 - Global invariance from local invariance
- Analysis in the one dimensional case
 - Characterization of equivalence classes of the derived kernel
 - Less exhaustive architecture is less discriminative

Range Compression: Empirical Observation

Figure: Sample distribution of $\widehat{K}_m(f,g)$ in *m*-layer architecture, for $1 \le m \le 4$. Note different scales at each plot.

- Loss of dynamic range at each layer.
- Creates problem with performance if architecture has ≥ 4 layers (with single precision) or ≥ 5 layers (with double precision).
- E.g. accuracy in 8-class MNIST dataset, single precision: 86% (3 layers) $\rightarrow 14\%$ (4 layers).

Range Compression: Empirical Observation

Range Compression: Theoretical Result

Theorem

Consider the architecture with \max pooling and normalized inner product kernel. If at layer $m\geq 1$ we have

$$\widehat{K}_m(f,g) \ge a$$
 for all $f,g \in \mathsf{Im}(v_m),$

then at layer m+1,

$$\widehat{K}_{m+1}(f,g) \ge \frac{2a}{1+a^2} \quad \text{for all } f,g \in \text{Im}(v_{m+1}).$$

- Convergence of derived kernel and neural response as $m \to \infty$.
- Much higher rate of convergence in practice.
- Holds for more general architecture (e.g. average pooling function, *ℓ*₁-norm, *ℓ*_p-norm).
- Also holds when normalization occurs in the pooling. E.g. inner product kernel and $\ell_1 \circ \sigma$ pooling function.

Range Compression: Corrections

- Introduce tunable parameter at each layer to "stretch" the range of the derived kernel: $\widehat{K}_m \xrightarrow{\text{stretch}} \widetilde{K}_m$.
- Recover performance in higher layers (e.g. $14\% \rightarrow 72\%$).

Range Compression: Corrections

Range compression

- Loss of dynamic range
- Invariance of the neural response
 - Global invariance from local invariance
- Analysis in the one dimensional case
 - Characterization of equivalence classes of the derived kernel
 - Less exhaustive architecture is less discriminative

Invariance of the Neural Response

- We can consider *invariance* of the (normalized) neural response with respect to some set of <u>domain</u> transformations *R* = {*r* | *r*: *v* → *v*}.
 (For example, in the case of vision, *R* can be the set of reflections or rotations.)
- We say that \widehat{N}_m is invariant to $\mathcal R$ if

$$\widehat{N}_m(f) = \widehat{N}_m(f \circ r)$$

for every $f \in Im(v_m)$ and $r \in \mathcal{R}$, or equivalently,

$$\widehat{K}_m(f \circ r, f) = 1.$$

Invariance of the Neural Response

Assumption

For all $r \in \mathcal{R}$ and $h \in H$, there exists a unique $h' \in H$ such that $r \circ h = h' \circ r$,

and there exists a unique $h'' \in H$ such that

 $h \circ r = r \circ h''.$

Theorem

If the initial kernel satisfies $\widehat{K}_1(f, f \circ r) = 1$ for all $r \in \mathcal{R}$ and $f \in \text{Im}(v_1)$, then at each layer $m \leq n$, we have

$$\widehat{K}_m(f, f \circ r) = 1$$

for all $r \in \mathcal{R}$, $f \in \text{Im}(v_m)$.

Global invariance from local invariance!

Range compression

- Loss of dynamic range
- Invariance of the neural response
 - Global invariance from local invariance
- Analysis in the one dimensional case
 - Characterization of equivalence classes of the derived kernel
 - Less exhaustive architecture is less discriminative

One Dimensional Strings

- An n-string is a function f: {1,...,k} → S, where S is a set of finite alphabets, i.e. f = a₁...a_k ∈ S^k.
- Patches are of the form $v_m = \{1, \ldots, |v_m|\}$, $|v_m| < |v_{m+1}|$.
- Function spaces are all possible strings, $Im(v_m) = S^{|v_m|}$.
- H_m is the set of all possible translations $h: v_m \to v_{m+1}$.
- Use max pooling function and normalized inner product kernel, with all possible templates.
- Consider the initial kernel

$$\widehat{K}_1(f,g) = \frac{\#\{i \mid f(i) = g(i)\}}{|v_1|}.$$

Note that $\widehat{K}_1(f,g) = 1$ iff f = g.

One Dimensional Strings: Invariance

- Given $f = a_1 \dots a_k$, the reversal of f is $f \circ r = a_k \dots a_1$.
- \widehat{K}_n is reversal invariant if $\widehat{K}_n(f, f \circ r) = 1$ for all $f \in \text{Im}(v_n)$.

Theorem

Suppose $|S|\geq 2.$ Then \widehat{K}_n is reversal invariant if and only if $|v_1|=1.$

Proof (sketch):

- **1** Local \rightarrow global invariance.
- **2** Consider $f = abb \dots b$ and $g = bb \dots ba$, with $a \neq b$.

In a truly exhaustive architecture:

Theorem

Suppose $|v_m| = m$ for $1 \le m \le n$. Then $\widehat{K}_n(f,g) = 1$ if and only if: • f = g, • f is the reversal of g, or • f and g are the "checkerboard" pattern: • $f = abab \dots$, $g = baba \dots$

What if we start with larger initial patch size?

Theorem

Suppose $n \ge 2$, $|v_1| \ge 2$, and $|v_{m+1}| - |v_m| = 1$ for $1 \le m \le n - 1$. Then $\widehat{K}_n(f,g) = 1$ if and only if: **1** f = g, or **2** f and g are the "checkerboard" pattern: $f = abab \dots, g = baba \dots$

What if we allow "jumps" in patch sizes?

Theorem

Suppose $n \ge 2$, $|v_1| \ge 3$, and $\max_{1 \le m \le n-1} (|v_{m+1}| - |v_m|) = 2.$ Then $\widehat{K}_n(f,g) = 1$ if and only if: **1** f = g, **2** $f = abab \dots$ and $g = baba \dots$, **3** $f = abcabc \dots$ and $g = bcabca \dots$, or **4** $f = abcabc \dots$ and $g = cabcab \dots$.

Less exhaustive architecture \Rightarrow more invariance!

- We provided a compact mathematical description of a hierarchical model, based on recent feedforward models of the visual cortex.
- Preliminary theoretical and empirical analysis of the model.
- Theory is just at the beginning and many questions remain. For example:
 - Further invariance and discrimination analysis?
 - Can we show that more layers are better?
 - How can we learn the templates better?
 - Is the max operation really crucial (e.g. in terms of the performance)? Can it be replaced by some other operation (e.g. average)?
 - How to choose the parameters (number of layers, patch sizes, number of templates)?