
Vision and Visual Neuroscience

Tomaso Poggio
Jim Mutch + Hueihan Jhuang

Class 14-15

Wednesday, March 31, 2010
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How then do the learning machines described in the theory compare with brains? 

 One of the most obvious differences is the ability of people and animals to 
learn from very few examples. The algorithms we have described can learn an object recognition 
task from a few thousand labeled images but a child, or even a monkey, can learn the same task from just a few 
examples. Thus an important area for future theoretical and experimental work is learning from partially labeled 
examples 

 A comparison with real brains offers another,  related, challenge to learning theory. The “learning algorithms” we 
have described in this paper correspond to one-layer architectures. Are hierarchical architectures 
with more layers justifiable in terms of learning theory? It seems that the learning theory of 
the type we have outlined does not offer any general argument in favor of hierarchical learning machines for 
regression or classification. 

 Why hierarchies? There may be reasons of efficiency – computational speed and use of computational 
resources. For instance, the lowest levels of the hierarchy may represent a dictionary of features that can be 
shared across multiple classification tasks.

  There may also be the more fundamental issue of sample complexity. Learning theory shows that the 
difficulty of a learning task depends on the size of the required hypothesis space. This complexity determines in 
turn how many training examples are needed to achieve a given level of generalization error. Thus our ability of 
learning from just a few examples, and its limitations, may be related to the hierarchical architecture of cortex. 

Notices of the American Mathematical Society (AMS), Vol. 50, No. 5,
537-544, 2003.

The Mathematics of Learning: Dealing with Data
Tomaso Poggio and Steve Smale
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Classical learning theory and Kernel Machines 
(Regularization in RKHS)

implies

Remark:

Kernel machines correspond to
shallow networks

X1

f

Xl
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Winning against the curse of dimensionality: 

new research directions in learning
Many processes - physical processes as well as human activities  – generate 
high-dimensional data: curse of dimensionality or poverty of stimulus. 

There are, however, basic properties of the data generating process that may 
allow to circumvent the problem of high dimensionality and make the analysis 
possible:

•  smoothness - exploited by L2 regularization techniques
•  sparsity - exploited by L1 regularization techniques
•  data geometry - exploited by manifold learning techniques
•  hierarchical organization – suggested by the architecture of sensory cortex
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New Research Directions
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This class: 
using a class of models to summarize/interpret 

experimental results…with caveats:

• Models are cartoons of reality, eg Bohr’s model of 
the hydrogen atom

• All models are “wrong”

• Some models can be useful summaries of data and 
some can be a good starting point for more 
complete theories
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1.  Problem of visual recognition, visual cortex
2.  Historical background
3.  Neurons and areas in the visual system
4.  Feedforward hierarchical models

•  Ventral stream model in more details (Jim Mutch)
•  Dorsal stream model (Hueihan Jhuang)
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unconstrained visual recognition is a difficult learning 
problem 

(e.g., “is there an animal in the image?”)

The Ventral Stream 
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Object Recognition and the Ventral Stream 

Desimone & Ungerleider 1989

dorsal 
stream:
“where”

ventral 
stream:
“what”

Hypothesis:  the hierarchy 
architecture of the ventral stream in 
monkey visual cortex has a key role in 
object recognition…of course 
subcortical pathways may also be 
important (thalamus, in particular 
pulvinar…).
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Riesenhuber & Poggio 1999, 2000; Serre Kouh Cadieu Knoblich 
Kreiman & Poggio 2005; Serre Oliva Poggio 2007

*Modified from (Gross, 1998)
 A model of the ventral stream, which is also a hierarchical algorithm… 

[software available online]
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1. Problem of visual recognition, visual cortex
2.  Historical background
3.  Neurons and areas in the visual system
4.  Feedforward hierarchical models

•  Ventral stream model in more details (Jim Mutch)
•  Dorsal stream model (Hueihan Jhuang)
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Some personal history: 
First step in developing a model: 

learning to recognize 3D objects in  IT cortex

Poggio & Edelman 1990

Examples of Visual Stimuli
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An idea for a module for view-invariant 

identification

Architecture that 
accounts for 
invariances to 3D 
effects (>1 view 
needed to learn!)

Regularization 
Network (GRBF)
with Gaussian kernels

View Angle

VIEW-
INVARIANT, 

OBJECT-
SPECIFIC

UNIT

Prediction: 
neurons become
view-tuned 
through learning

Poggio & Edelman 1990
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Learning to Recognize 3D Objects in  IT 

Cortex

Logothetis Pauls & Poggio 1995

Examples of Visual Stimuli

After human psychophysics 
(Buelthoff, Edelman, Tarr, 
Sinha, to be added next 
year…), which supports 
models based on view-tuned 
units... 

… physiology!
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Recording Sites in Anterior IT

Logothetis, Pauls & Poggio 1995

…neurons tuned to 
faces are intermingled 

nearby….
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Neurons tuned to object  views,
 as predicted by model!

Logothetis Pauls & Poggio 1995
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A “View-Tuned” IT Cell
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Logothetis Pauls & Poggio 1995
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But also view-invariant object-specific neurons 
(5 of them over 1000 recordings)

Logothetis Pauls & Poggio 1995
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View-tuned cells: 
scale invariance (one training view only) motivates present model

Logothetis Pauls & Poggio 1995
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Hierarchy

• Gaussian centers (Gaussian Kernels) tuned to 
complex multidimensional features as 
composition of lower dimensional Gaussian

• What about tolerance to position and scale?
• Answer: hierarchy of invariance and tuning 

operations
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Answer: the “HMAX” model

Riesenhuber & Poggio 1999, 2000
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1.  Problem of visual recognition, visual cortex
2.  Historical background
3.  Neurons and areas in the visual system
4.  Feedforward hierarchical models

•  Ventral stream model in more details (Jim Mutch)
•  Dorsal stream model (Hueihan Jhuang)
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Different shapes and sizes but common structure

Source: http://webvision.med.utah.edu/
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Neural Circuits

Source: Modified from Jody Culham’s web slides
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and with            ,            ,             ,              and                      we obtain

Membrane with excitatory and inhibitory 

synapses
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• Human Brain
– 1010-1011 neurons  (1 million flies )
– 1014- 1015 synapses

• Ventral stream in rhesus monkey
– 109 neurons  
– 5 106 neurons in AIT

• Neuron
– Fundamental space dimensions: 

• fine dendrites : 0.1 µ diameter; lipid bilayer membrane : 5 nm thick; 
specific proteins : pumps, channels, receptors, enzymes

– Fundamental time length : 1 msec

Object Recognition and the Ventral Stream 
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• Human Brain
– 1010-1011 neurons  (~1 million flies )
– 1014- 1015 synapses

• Ventral stream in rhesus monkey
– ~109 neurons in the ventral stream                  

(350 106 in each emisphere)
– ~15 106 neurons in AIT (Anterior 

InferoTemporal) cortex

The Ventral Stream 
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The ventral stream hierarchy: V1, V2, 
V4, IT

A gradual increase in the
receptive field size, in the complexity of the 
preferred stimulus, in tolerance to position 

and scale changes

Kobatake & Tanaka, 1994

The Ventral Stream 

Wednesday, March 31, 2010



V1: hierarchy of simple and complex cells

LGN-type 
cells

Simple 
cells

Complex 
cells

(Hubel & Wiesel 1959)
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cells
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The ventral stream hierarchy: V1, V2, 
V4, IT

A gradual increase in the
receptive field size, in the complexity of the 
preferred stimulus, in tolerance to position 

and scale changes

Kobatake & Tanaka, 1994

The Ventral Stream 
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Gross Brain Anatomy

A large percentage of the cortex devoted 
to vision
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The Visual System

[Van Essen & Anderson, 1990]
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The visual 
system

•  Over 30 visual 
areas

•  Over 300 cortico-
cortical pathways

(Felleman & VanEssen 1991)
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(Thorpe and Fabre-Thorpe, 2001)
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Source: Lennie,  Maunsell, Movshon

The ventral stream

Wednesday, March 31, 2010



1.  Problem of visual recognition, visual cortex
2.  Historical background
3.  Neurons and areas in the visual system
4.  Feedforward hierarchical models

•  Ventral stream model in more details (Jim Mutch)
•  Dorsal stream model (Hueihan Jhuang)
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From HMAX to the present model

38

How the new version of the model evolved from the original one 

1. The two key operations: Operations for selectivity and invariance, originally computed in a simplified
and idealized form (i.e., a multivariate Gaussian and an exact max, see Section 2) have been
replaced by more plausible operations, normalized dot-product and softmax
 
2. S1 and C1 layers: In [Serre and Riesenhuber, 2004] we found that the S1 and C1 units in the original
model were too broadly tuned to orientation and spatial frequency and revised these units accordingly.
In particular at the S1 level, we replaced Gaussian derivatives with Gabor filters to better fit
parafoveal simple cellsʼ tuning properties. We also modified both S1 and C1 receptive field sizes.

3. S2 layers: They are now learned from natural images. S2 units are more complex than the old 
ones (simple 2 °— 2 combinations of orientations). The introduction of learning, we believe, has b
een the key factor for the model to achieve a high-level of performance on natural
images, see [Serre et al., 2002].

4. C2 layers: Their receptive field sizes, as well as range of invariances to scale and position have been
decreased so that C2 units now better fit V4 data. 

5. S3 and C3 layers: They were recently added and constitute the top-most layers of the model along
with the S2b and C2b units (see Section 2 and above). The tuning of the S3 units is also learned from
natural images.

6. S2b and C2b layers: We added those two layers to account for the bypass route (that projects directly
from V1/V2 to PIT, thus bypassing V4 [see Nakamura et al., 1993]).
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 A hierarchical feedforward model of the ventral 
stream based on neural data 

[software available online]
Wednesday, March 31, 2010



Riesenhuber & Poggio 1999, 2000;  Serre Kouh Cadieu Knoblich Kreiman & Poggio 
2005; Serre Oliva Poggio 2007

• It is in the family of “Hubel-Wiesel” 
models (Hubel & Wiesel, 1959; 
Fukushima, 1980; Oram & Perrett, 
1993, Wallis & Rolls, 1997; 
Riesenhuber & Poggio, 1999; Thorpe, 
2002; Ullman et al., 2002; Mel, 1997; 
Wersing and Koerner, 2003; LeCun et 
al 1998; Amit & Mascaro 2003; Deco & 
Rolls 2006…)

• As a biological model of object 
recognition in the ventral stream – from 
V1 to PFC -- it is perhaps the most 
quantitative and faithful to known 
neuroscience 

• A model which “copies” the 
neuroscience. Millions of (model) 
neurons.

Model of Visual Recognition (millions of units)
based on neuroscience of cortex

Wednesday, March 31, 2010



Two key computations, 
suggested by physiology

Unit 
types

Pooling Computation Operation

Simple 
Selectivity / 

template 
matching

Gaussian-
tuning / 

AND-like

Complex Invariance Soft-max / 
or-like
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Max-like operation (or-like)

Complex units

Gaussian-like tuning 
operation (and-like)

Simple units
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Max-like operation (or-like)

Complex units

Gaussian-like tuning 
operation (and-like)

Simple units
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Max-like operation (or-like)

Complex units

Gaussian-like tuning 
operation (and-like)

Simple units
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 Max-like operation (OR-like)

 Complex units Stage 1

Stage 2

Two operations (~OR, ~AND):

disjunctions of conjunctions

Stage 3
 

y = e− |x−w |
2

or

y ~ xiw
| x |

Tuning operation (Gaussian-like, 
AND-like)

Simple units

Each operation 
~microcircuits of ~100 

neurons
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Gaussian tuning

Gaussian tuning in IT 
around 3D views

Logothetis Pauls & Poggio 1995

Gaussian tuning in 
V1 for orientation

Hubel & Wiesel 1958
Wednesday, March 31, 2010



Max-like operation

Max-like behavior in V1

Lampl Ferster Poggio & Riesenhuber 2004 
see also Finn Prieber & Ferster 2007

Gawne & Martin 2002

Max-like behavior in V4
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(Knoblich Koch Poggio in prep; Kouh & Poggio 2007; Knoblich Bouvrie Poggio 2007)

Plausible biophysical implementations

• Max and Gaussian-like tuning 
can be approximated with 
same canonical circuit using 
shunting inhibition. Tuning (eg 
“center” of the Gaussian) 
corresponds to synaptic 
weights.
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Of the same form as model 
of MT (Rust et al., Nature 
Neuroscience, 2007

Can be implemented by 
shunting inhibition (Grossberg 
1973, Reichardt et al. 1983, 
Carandini and Heeger, 1994) 
and spike threshold variability 
(Anderson et al. 2000, Miller 
and Troyer, 2002)

Adelson and Bergen (see also 
Hassenstein and Reichardt, 
1956)

Basic circuit is closely related to other models

Wednesday, March 31, 2010



Stage 1

Stage 2

A plausible biophysical implementation
for both Gaussian tuning (~AND) + max 

(~OR): normalization circuits with divisive 
inhibition (Kouh, Poggio, 2008; also RP, 1999; 

Heeger, Carandini, Simoncelli,…)

A canonical microcircuit of spiking neurons?

Biophysics: one circuit
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Stage 1

Stage 2

A plausible biophysical implementation
for both Gaussian tuning (~AND) + max 

(~OR): normalization circuits with divisive 
inhibition (Kouh, Poggio, 2008; also RP, 1999; 

Heeger, Carandini, Simoncelli,…)

A canonical microcircuit of spiking neurons?

Biophysics: one circuit
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Learning: supervised and unsupervised
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• Generic, overcomplete 
dictionary of “templates” or 
image components (from V1 to 
IT) represented by tuning of 
cells generated during 
unsupervised learning (from 
~10,000 natural images) during 
a developmental-like stage

see also (Foldiak 1991; Perrett et al 1984;  Wallis & Rolls, 
1997; Lewicki and Olshausen, 1999; Einhauser et al 
2002; Wiskott & Sejnowski 2002; Spratling 2005)

Learning: supervised and unsupervised
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• Generic, overcomplete 
dictionary of “templates” or 
image components (from V1 to 
IT) represented by tuning of 
cells generated during 
unsupervised learning (from 
~10,000 natural images) during 
a developmental-like stage

see also (Foldiak 1991; Perrett et al 1984;  Wallis & Rolls, 
1997; Lewicki and Olshausen, 1999; Einhauser et al 
2002; Wiskott & Sejnowski 2002; Spratling 2005)

• Task-specific circuits (from IT to PFC)

- Supervised learning: ~ classifier

Learning: supervised and unsupervised
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More on feedforward (CBCL) models

50

S and C layers and parameters

unsupervised, developmental learning

software, GPUs and optimization

Jim Mutch
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• V1:
• Simple and complex cells tuning (Schiller et al 1976; Hubel & Wiesel 1965; Devalois et al 1982)
• MAX-like operation in subset of complex cells (Lampl et al 2004)

• V4:
• Tuning for two-bar stimuli (Reynolds Chelazzi & Desimone 1999)
• MAX-like operation (Gawne et al 2002)
• Two-spot interaction (Freiwald et al 2005)
• Tuning for boundary conformation (Pasupathy & Connor 2001, Cadieu, Kouh, Connor et al., 2007)
• Tuning for Cartesian and non-Cartesian gratings (Gallant et al 1996)

• IT:
• Tuning and invariance properties (Logothetis et al 1995, paperclip objects)
• Differential role of IT and PFC in categorization (Freedman et al 2001, 2002, 2003)
• Read out results (Hung Kreiman Poggio & DiCarlo 2005)
• Pseudo-average effect in IT (Zoccolan Cox & DiCarlo 2005; Zoccolan Kouh Poggio & DiCarlo 2007)

• Human:
• Rapid categorization (Serre Oliva Poggio 2007)
• Face processing (fMRI + psychophysics) (Riesenhuber et al 2004; Jiang et al 2006)

(Serre Kouh Cadieu Knoblich Kreiman & Poggio 2005)

Feedforward Models:
comparison w/  neural data
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Riesenhuber & Poggio 1999 2000;                                      
Serre Kouh Cadieu Knoblich Kreiman & Poggio 2005

✦V1:
• Simple and complex cells tuning properties 

(Schiller et al 1976; Hubel & Wiesel 1965; 
Devalois et al 1982)

• MAX operation in subset of complex cells 
(Lampl et al 2004)

✦V4:
• Tuning for two-bar stimuli (Reynolds Chelazzi & 

Desimone 1999)
• MAX operation (Gawne et al 2002)

• Two-spot interaction (Freiwald et al 2005)
• Tuning for boundary conformation (Pasupathy & 

Connor 2001)

• Tuning for Cartesian and non-Cartesian gratings 
(Gallant et al 1996)

✦IT:
• Tuning and invariance properties (Logothetis et 

al 1995)
• Differential role of IT and PFC in categorization 

(Freedman et al 2001 2002 2003)

• Read out data (Hung Kreiman Poggio & DiCarlo 
2005)

• Average effect in IT (Zoccolan Cox & DiCarlo 
2005; Zoccolan Kouh Poggio & DiCarlo in press)

✦Human behavior:
• Rapid animal categorization (Serre Oliva Poggio 

2007)

Comparison w/  neural data
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Chou Hung, Gabriel Kreiman, James DiCarlo, Tomaso Poggio, Science, Nov 4, 2005

Agreement of model  w| IT Readout data
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The end station of the ventral stream 
in visual cortex is IT
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77 objects, 
8 classes

Chou Hung, Gabriel Kreiman, James DiCarlo, Tomaso Poggio, Science, 2005

 IT Readout
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77 objects, 
8 classes

Chou Hung, Gabriel Kreiman, James DiCarlo, Tomaso Poggio, Science, Nov 4, 2005

Reading-out the neural code in AIT
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Recording at each recording site during passive viewing

100 ms 100 ms

• 77 visual objects
• 10 presentation repetitions per object
• presentation order randomized and counter-balanced

time
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Example of One IT Cell
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Chou Hung, Gabriel Kreiman, James DiCarlo, Tomaso Poggio, Science, Nov 4, 2005

Agreement of model  w| IT Readout data
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 Training a classifier on neuronal 
activity.

INPUT OUTPUTf
From a set of data (vectors of activity of n neurons (x)  and object label (y)

 

Find (by training) a classifier eg a function f such that 

         

is a good predictor of object label y for a future neuronal activity x
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Decoding the Neural Code …
population response (using a classifier)

x

Learning 
from (x,y) 
pairs

y ∈ {1,…,8}
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Categorization

• Toy

• Body

• Human Face

• Monkey Face

• Vehicle

• Food

• Box

• Cat/Dog

Video speed: 1 frame/sec
Actual presentation rate: 5 objects/sec

80% accuracy in read-out from ~200 neurons

From neuronal 
population activity… …a classifier can decode and guess what the 

monkey was seeing…

Hung*, Kreiman, Poggio, DiCarlo. Science 2005
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A result (C. Hung, 
et al., 2005 ):

very rapid
read-out of object 
information rapid 
(80-100 ms from 

onset of stimulus) 

Information 
represented by 
population of 

neurons over very 
short times

 (over 12.5ms bin)

Very strong constraint
on neural code
(not firing rate).
Consistent with our IF 
circuits for max and 
tuning
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We can decode from model units as well as from ITIt turns out that the model agrees with IT data: we can decode 
from model units as well as from IT
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So…experimentally we can decode the brain’s 
code and 

read-out from neural activity what the monkey is 
seeing 

We can also read-out with similar results 
from the model !!!
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Agreement of model  w| IT Readout data
Reading out category and identity invariant to position and scale

Hung Kreiman Poggio DiCarlo 2005

Serre Kouh Cadieu Knoblich Kreiman & Poggio 2005
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Agreement of Model  w| IT Readout data

Hung, et al. 2005; Serre et al., 2005 

Reading out category and identity “invariant” to 
position and scale
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• 70/30 train/test (20 splits)
• 64 randomly selected C3/C2b features

– to match 64 recording sites
• Scale:     77.2 ± 1.25% vs. ~63% (physiology)
• Location:     64.9 ± 1.44% vs. ~65% (physiology)
• Categorization:    71.6 ± 0.91% vs. ~77% (physiology)

PhysiologyModel

Reading Out Scale and Position Information: 
comparing the model to Hung et al.

Tan, Serre, Poggio, 2008
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Rapid Categorization:
mask should force visual 

cortex to operate in 
feedforward mode

Animal present
or not ?

30 ms ISI

20 ms

Image

Interval 
Image-Mask

Mask
1/f noise

Thorpe et al 1996; Van Rullen & Koch 2003; Bacon-Mace et al 2005

Hierarchical feedforward models of the 

ventral stream
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Rapid Categorization 

Hierarchical feedforward models of the 

ventral stream
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Rapid Categorization 

Hierarchical feedforward models of the 

ventral stream
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Feedforward Models:
“predict” rapid categorization 
(82% model vs. 80% humans) 

Hierarchical feedforward models of the 

ventral stream
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Feedforward Models:
“predict” rapid categorization 
(82% model vs. 80% humans) 

Hierarchical feedforward models of the 

ventral stream
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Feedforward Models:
“predict” rapid categorization 
(82% model vs. 80% humans) 

Hierarchical feedforward models of the 

ventral stream

Wednesday, March 31, 2010



Hierarchical feedforward models of the 

ventral stream

• Image-by-image correlation:
– Heads:             ρ=0.71 
– Close-body:     ρ=0.84  
– Medium-body: ρ=0.71
– Far-body:         ρ=0.60
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Read-out of object category in clutter 
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Read-out of object category in clutter 

A. Sample of the objects pasted in complex backgrounds. Here we show a single object 
(a car) out of the 77 objects that were used in this experiment. Here we show the object 
overlayed onto two different complex background scenes (city landscape, top and house 
exterior, bottom) out of the 98 different background scenes that we used in this 
experiment. We did not attempt to generate a ”meaningful” image, objects (including their 
surrounding gray background) were merely overlayed onto the background scenes. We 
used four different relative sizes of the object and background images. The center of 
each object was randomly positioned in the image. B, C. Classification performance (B. 
categorization, C. identification) as a function of the number of C2 units used to train the 
classifier. The classifier was trained using 20 % of the 98 backgrounds and the 
performance was tested with the same objects presented under different backgrounds. 
Object position within the image was randomized (both for the training and
testing images). The different colors correspond to different relative sizes for the object 
with respect to the background. D, E. Classification performance (D. categorization, E. 
identification) using 256 units as a function of the relative size of object to background. 
The horizontal dashed lines indicate chance performance obtained by randomly shuffling 
the object labels during training.
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Read-out of object category and identity in 

images containing multiple objects 
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Read-out of object category and identity in 

images containing multiple objects 

Classification performance for reading out object category (red)or object identity (blue) in 
the presence of two objects (A, C, E) or three objects (B, D, F). A, B Examples of the 
images used in training (top) and testing (bottom).
Here, we show images containing single objects to train the classifier (top). However, 
performance was not significantly different when we used images containing multiple 
objects to train the classifier (see text and Appendix A.9 for details).
C, D Classification performance as a function of the number of C2 units used to train the 
classifier. Here we used a multi-class classifier approach; the output of the classifier for 
each test point was a single possible category (or object identity) and a we considered 
the prediction to be a hit if this prediction matched any of the objects present in the 
image. The dashed lines show chance performance levels and the error bars correspond 
to one standard deviation from 20 random choices of which units were used to train the 
classifier. We exhaustively evaluated every possible object pair or triplet. E, F Average 
performance for each of the binary classifiers as a function of the number of C2 units 
used for training. The number of binary classifiers was 8 for categorization (red) and 77 
for identification (blue). The error bars show one standard deviation over 20 random 
choices of C2 units.
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Feedforward Models:
perform well compared to 

engineered computer vision systems (in 2006) 

Hierarchical feedforward models of the 

ventral stream

Bileschi, Wolf, Serre, Poggio, 2007
Wednesday, March 31, 2010



Feedforward Models:
perform well compared to 

engineered computer vision systems (in 2006) 

Hierarchical feedforward models of the 

ventral stream

Bileschi, Wolf, Serre, Poggio, 2007
Wednesday, March 31, 2010



Feedforward Models:
perform well compared to 

engineered computer vision systems (in 2006) 

Hierarchical feedforward models of the 

ventral stream

Bileschi, Wolf, Serre, Poggio, 2007
Wednesday, March 31, 2010



Bio-motivated computer 
vision

Scene parsing and object recognition

image size multi-thread GPU (cuda)

64x64 4.5x 14x

128x128 3.5x 14x

256x256 1.5x 17x

512x512 2.5x 25x

From ~1 min down to ~1 sec !!

Speed improvement since 2006

Serre Wolf & Poggio 2005; Wolf & Bileschi 2006; Serre et 
al 2007
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Remarks

• The stage that includes (V4-PIT)-AIT-PFC 
represents a learning network of the Gaussian 
RBF type that is known (from learning theory) to 
generalize well 

• In the model the stage between IT and ‘’PFC” is 
a linear classifier – like the one used in the read-
out experiments

• The inputs to IT are a large dictionary of 
selective and invariant features
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Readings on the work with 

many relevant references

A detailed description of much of the work is in the 
“supermemo” at 

http://cbcl.mit.edu/projects/cbcl/publications/ai-
publications/2005/AIM-2005-036.pdf

Other recent publications and references
can be found at 

http://cbcl.mit.edu/publications/index-pubs.html
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Model extension to the dorsal stream: 
Recognition of actions

Thomas Serre, Hueihan Jhuang & 
Tomaso Poggio collaboration with 
David Sheinberg at Brown University

ventral stream

dorsal stream

dorsal 
stream

ventral 
stream

Wednesday, March 31, 2010



Quantitative automatic phenotyping
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Behavioral analyses of mouse behavior needed to:

Assess functional roles of genes

Validate models of mental diseases 

Help assess efficacy of drugs

Automated quant system to help:

Limit subjectivity of human intervention

24/7 home-cage analysis of behavior

24/7 monitoring of animal well-being

Quantitative automatic phenotyping
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More on models of the dorsal stream: 
action recognition and applications

Hueihan Jhuang

84
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Hierarchical feedforward models of visual cortex
may be wrong

…but present a challenge
 for “classical” learning theory: 

an unusual, hierarchical architecture
with unsupervised and supervised learning

working well.
But...ironically, we do not understand why

these models work well 
(see LeCun, Poggio, Hinton...)

…so, 
we need theories -- not just models!
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GOAL:
Hierarchical architectures to preprocess images/signals

in order to reduce the sampling complexity of a classifier trained 
with labeled examples.

The hierarchical architecture is synthesized from a large number 
of unsupervised examples. 

Joint work with Steve Smale, Jake Bouvrie, Andrea Caponnetto,
Lorenzo Rosasco

Mathematics of the Neural Response, J. Foundations of Comp. Mathematics, 2009

Theory of Hierarchical Learning Machines (HLM)
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 HLMs: 
a mathematical framework for

 hierarchical learning machines 

Lorenzo Rosasco + Andre Wibisono: Class 16

87
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Extension to attention: dealing with clutter

see also Broadbent 1952 1954; Treisman 1960; Treisman & Gelade 1980; Duncan & Desimone 1995; Wolfe, 1997; Tsotsos and  many others

Zoccolan Kouh Poggio DiCarlo 2007 Serre Oliva Poggio 2007

Wednesday, March 31, 2010



Extension to attention: dealing with clutter

see also Broadbent 1952 1954; Treisman 1960; Treisman & Gelade 1980; Duncan & Desimone 1995; Wolfe, 1997; Tsotsos and  many others

Zoccolan Kouh Poggio DiCarlo 2007 Serre Oliva Poggio 2007

Parallel processing  (No aOenPon)

Wednesday, March 31, 2010



Extension to attention: dealing with clutter

see also Broadbent 1952 1954; Treisman 1960; Treisman & Gelade 1980; Duncan & Desimone 1995; Wolfe, 1997; Tsotsos and  many others

Zoccolan Kouh Poggio DiCarlo 2007 Serre Oliva Poggio 2007

Parallel processing  (No aOenPon) Serial processing (With aOenPon)

Vs. 

PFC
LIP/FEF IT

V4

V2
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Extending feedforward models with an 
additional attention module

Sharat Chikkerur: Class 17

89
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• Most existing models of visual cortex do not account 
  -- for cortical backprojections 
  -- for the emerging detailed connectivity among cortical 

    areas or patches (e.g. “network of face patches….)
  -- for subcortical pathways and noncortical brain regions 

    e.g. pulvinar…)
• More data from physiology and fMRI are needed

Limitations of present feedforward hierarchical models
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A Turing Test for Vision

• Vision is more than categorization or identification: 
 it is image understanding/inference/parsing

• Our visual system can “answer” almost any kind of question 
about an image or video (a Turing test for vision…)
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