
A Bayesian Perspec.ve on 
Sta.s.cal Learning Theory

Daniel M. Roy (MIT)
9.520: Sta.s.cal Learning Theory, Spring 2009 

Many figures and slides taken from:
Zoubin Ghahramani (Cambridge; CMU)

Carl Rasmussen (Cambridge)
Baback Moghaddam (JPL)
Charlie Frogner (MIT)



Overview

• Bayesian Basics

• Bayesian Philosophy

• Recap: Bayesian Linear Regression

• Recap: Bayesian Non‐linear Regression (Gaussian Processes)

• How to choose the kernel?  
a.k.a. Model Selec.on
a.k.a. Bayes Occam’s Razor

• Nonparametric Philosophy:  Occam’s Hill v. Occam’s Plateau

• Conclusion
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Probability = Degree of Belief

• Let C be the result of a coin toss, either heads (=h) or tails (=t), 
which is about to be revealed to you.

• FrequenFst InterpretaFon
P(C=h) = p       “The long run frequency of heads is p”
p is a nonrandom property of the coin/experiment

• Bayesian InterpretaFon
P(C=h) = 1       “I’m absolutely certain the coin is heads”
P(C=h) = 0       “I’m absolutely certain the coin is tails”
P(C=h) = 1/2   “I’m completely uncertain”
P(C=h) = p       “The probability that the coin is heads is p.”
p is an uncertain quan.ty; i.e., we model it as random and put a 
distribu.on on it represen.ng our uncertainty before learning C



Representing Beliefs (Artificial Intelligence)

Consider a robot. In order to behave intelligently
the robot should be able to represent beliefs about
propositions in the world:

“my charging station is at location (x,y,z)”

“my rangefinder is malfunctioning”

“that stormtrooper is hostile”

We want to represent the strength of these beliefs numerically in the brain of the
robot, and we want to know what rules (calculus) we should use to manipulate
those beliefs.

Zoubin Ghahramani
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Representing Beliefs II

Let’s use b(x) to represent the stength of belief in (plausibility of) proposition x.

0 ≤ b(x) ≤ 1
b(x) = 0 x is definitely not true
b(x) = 1 x is definitely true
b(x|y) strength of belief that x is true given that we know y is true

Cox Axioms (Desiderata):

• Strengths of belief (degrees of plausibility) are represented by real numbers
• Qualitative correspondence with common sense
• Consistency

– If a conclusion can be reasoned in more than one way, then every way should
lead to the same answer.

– The robot always takes into account all relevant evidence.
– Equivalent states of knowledge are represented by equivalent plausibility

assignments.

Consequence: Belief functions (e.g. b(x), b(x|y), b(x, y)) must satisfy the rules of
probability theory, including Bayes rule. (see Jaynes, Probability Theory: The Logic
of Science)
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The Dutch Book Theorem

Assume you are willing to accept bets with odds proportional to the stength of your
beliefs. That is, b(x) = 0.9 implies that you will accept a bet:

{
x is true win ≥ $1
x is false lose $9

Then, unless your beliefs satisfy the rules of probability theory, including Bayes rule,
there exists a set of simultaneous bets (called a “Dutch Book”) which you are
willing to accept, and for which you are guaranteed to lose money, no matter
what the outcome.

The only way to guard against Dutch Books to to ensure that your beliefs are
coherent: i.e. satisfy the rules of probability.



Where do priors models come from?

• Let {Sc,t} be stock prices for companies c and .mes t.  We need a 
model of P(Sc,t).... where to begin?

• We should only believe the predic.ons from a model if we have 
faithfully encoded our knowledge into the probabilis.c model.

• PAC‐Bayes:  Risk of using a model related to divergence between 
the distribu.on before and aaer receiving data.  

• Use Bayesian methods as a language to encode assump.ons: 
Bayesian inference ensures that we never violate the 
assump.ons that our distribu.ons represent when upda.ng 
our beliefs.



de Fined’s Theorem

• Theorem: Let C1, C2, ... be an infinite sequence of binary random 
variables.  If the distribu.on of the sequence is invariant to 
permuta.ons (i.e. if the sequence is exchangeable), then

there is a random variable θ with some distribu.on F
such that condi.oned on θ, the sequence is condi.onally 
independent and iden.cally distributed (i.i.d.).

furthermore  

• Bayesian jus.fica.on for inven.ng a latent variable θ and 
assigning a (prior) distribu.on Q(θ).

F (θ < t) = P

(
lim

n→∞

n∑

i=1

Ci < t

)

P (θ, C1, C2, . . . ) = Q(θ)× P (C1|θ)× P (C2|θ) . . .
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Asymptotic Certainty

Assume that data set Dn, consisting of n data points, was generated from some
true θ∗, then under some regularity conditions, as long as p(θ∗) > 0

lim
n→∞

p(θ|Dn) = δ(θ − θ∗)

In the unrealizable case, where data was generated from some p∗(x) which cannot
be modelled by any θ, then the posterior will converge to

lim
n→∞

p(θ|Dn) = δ(θ − θ̂)

where θ̂ minimizes KL(p∗(x), p(x|θ)):

θ̂ = argmin
θ

∫
p∗(x) log

p∗(x)
p(x|θ) dx = argmax

θ

∫
p∗(x) log p(x|θ) dx

Warning: careful with the regularity conditions, these are just sketches of the theoretical results
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Asymptotic Consensus

Consider two Bayesians with different priors, p1(θ) and p2(θ),
who observe the same data D.

Assume both Bayesians agree on the set of possible and impossible values of θ:

{θ : p1(θ) > 0} = {θ : p2(θ) > 0}

Then, in the limit of n → ∞, the posteriors, p1(θ|Dn) and p2(θ|Dn) will converge
(in uniform distance between distibutions ρ(P1, P2) = sup

E
|P1(E)− P2(E)|)

coin toss demo: bayescoin



Probability Supports 
(Knowledge) Engineering

• Universal PrimiFves
Independent uniformly distributed [0,1]‐random variables 
sufficient for any computable distribu.on

• Means of combinaFon 
Build complex models from simple pieces  

• Means of abstracFon
Create new primi.ves

• Possible to devise inference algorithms that respect this 
structure as well (see e.g., MIT‐Church [GMRBT2008])

P (X) · P (Y |X) = P (X, Y )

P (Z) =
∫

· · ·
∫

P (A,B, . . . , Y, Z) dA dB · · · dY



Bayesian Linear Regression
• Prior knowledge: data Y are noisy measurements of a linear 

func.on                       at points X=(x1,...,xn)T 

• We are uncertain about the func.on, so as Bayesian we put a 
prior on the space of linear func.ons.  We do so indirectly by 
placing a prior on 

fS(x) = xT θ

θ
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Model:

Y |X , θ ∼ N
(

Xθ,σ2ε I
)

, θ ∼ N (0, I)

Posterior:

θ|X ,Y ∼ N
(

µθ|X ,Y ,Σθ|X ,Y

)

where

µθ|X ,Y = X
T (XXT + σ2ε I)

−1
Y

Σθ|X ,Y = I − X
T (XXT + σ2ε I)

−1
X

This is Gaussian, so

θ̂MAP(Y |X ) = θ̂BLS(Y |X ) = X
T (XXT + σ2ε I)

−1
Y

C. Frogner Bayesian Interpretations of Regularization

Charlie Frogner
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Linear 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Linear RLS as a MAP estimator

Model:

Y |X , θ ∼ N
(

Xθ,σ2ε I
)

, θ ∼ N (0, I)

θ̂MAP(Y |X ) = XT (XXT + σ2ε I)
−1Y

Recall the linear RLS solution:

θ̂RLS(Y |X ) = argmin
θ

1

2

n
∑

i=1

(yi − xTi θ)2 +
λ

2
‖θ‖2

= XT (XXT +
λ

2
I)−1Y

How do we write the estimated function?

C. Frogner Bayesian Interpretations of Regularization



Bayesian Non‐Linear Regression
• Prior knowledge: data Y are noisy measurements of a non‐linear 

func.on                             at points X=(x1,...,xn)T 

• We are uncertain about the func.on, so as Bayesian we put a 
prior on the space of func.ons with this basis.  Again, we do so 
indirectly by placing a prior on the coefficients θ

Charlie Frogner

fS(x) = φ(x)T θ

What about Kernel RLS?

Model:

Y |X , θ ∼ N
(

φ(X )θ,σ2ε I
)

, θ ∼ N (0, I)

Then:

θ̂MAP(Y |X ) = φ(X )T (K (X ,X ) + σ2ε I)
−1
Y

Estimated function?

f̂MAP(x) = φ(x)θ̂MAP(Y |X )

= φ(x)φ(X )T (K (X ,X ) + σ2ε I)
−1
Y

= K (x ,X )(K (X ,X ) +
λ

2
I)−1Y

= f̂RLS(x)

C. Frogner Bayesian Interpretations of Regularization



Bayesian Non‐Linear Regression (cont.)
• Prior knowledge: data Y are noisy measurements of a non‐linear 

func.on                             at points X=(x1,...,xn)T 

• We are uncertain about the func.on, so as Bayesian we put a 
prior on the space of func.ons with this basis.  Again, we do so 
indirectly by placing a prior on the coefficients θ

Charlie Frogner

fS(x) = φ(x)T θ
Transductive setting

Set ΛY = K (X ,X ) + σ2I, ΛYY∗ = K (X ,X ∗), ΛY∗ = K (X ∗,X ∗).

Posterior:

Y
∗|X ,Y ∼ N

(

µY∗|X ,Y ,ΣY∗|X ,Y

)

where

µY∗|X ,Y = µY∗ + K (X ∗,X )(K (X ,X + σ2I)−1(Y − µY )

ΣY∗|X ,Y = K (X ∗,X ∗) − K (X ∗,X )(K (X ,X ) + σ2I)−1K (X ,X ∗)

So: Ŷ ∗
MAP

= f̂RLS(X ∗).

C. Frogner Bayesian Interpretations of Regularization
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Samples from Gaussian processes with different c(x, x′)
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Prediction using GPs with different c(x, x′)

A sample from the prior for each covariance function:
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Squared Exponential (RBF) Kernel

by Carl Rasmussen
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Nonstationary Covariances

by Carl Rasmussen
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2.1) [10 pts] Match each of figures (1, 2, . . . ), with one of the kernels (a, b, . . . ). Each plot contains 3 samples
from a GP with a particular kernel. These functions are drawn by selecting finely spaced time points
and drawing a sample from N(f ; 0,K) where K is the Gram matrix over the same points.

Here are the kernels:

(a) 1; K(t, t′) = exp
(
− (t−t′)2

2

)

(b) 3; K(t, t′) = exp
(
− (t−t′)2

2

)
+ 0.8 t t′, second term adds linear trend

(c) 4; K(t, t′) = exp
(
− (t−t′)2

8

)

(d) 6; K(t, t′) = min{t, t′} (Brownian motion, φt(x) = 1(x ∈ [0, t]), hence f =
R t

0
B(x) dx, where B(x) is white noise)

(e) 2; K(t, t′) = 1
1000(t t′)2 + δ(t, t′), where δ(t, t′) = 1 if t = t′, 0 otherwise.

(f) ∅; K(t, t′) = 1
1000(t t′)2 + 4 δ(t, t′), same as 2 (quadratic trend) but much noisier

(g) 5; K(t, t′) =
∑3

n=0 e−n2 cos
(
n(t− t′)

)
, first several Fourier basis.
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Which kernel?

• The previous model expressed no uncertainty in the basis 
or equivalently no uncertainty in the kernel.

• Concrete example:  what degree polynomial should we fit to the 
data?

φ(x)

K(xi, xj) = (xT
i xj + 1)m
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Model structure and overfitting:
A simple example: polynomial regression
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Bayesian Occam’s Razor and Model Comparison

Compare model classes, e.g. m and m′, using posterior probabilities given D:

p(m|D) =
p(D|m) p(m)

p(D)
, p(D|m) =

∫
p(D|θ,m) p(θ|m) dθ

Interpretation of the Marginal Likelihood (“evidence”): The probability that
randomly selected parameters from the prior would generate D.

Model classes that are too simple are
unlikely to generate the data set.

Model classes that are too complex can
generate many possible data sets, so
again, they are unlikely to generate that
particular data set at random.
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"just right"
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Bayesian Model Comparison: Occam’s Razor at Work
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Non-parametric Bayesian Models

• Bayesian methods are most powerful when your prior adequately captures your
beliefs.

• Inflexible models (e.g. mixture of 5 Gaussians, 4th order polynomial) yield
unreasonable inferences.

• Non-parametric models are a way of getting very flexible models.

• Many can be derived by starting with a finite parametric model and taking the
limit as number of parameters →∞

• Non-parametric models can automatically infer an adequate model
size/complexity from the data, without needing to explicitly do Bayesian model
comparison.2

2Even if you believe there are infinitely many possible clusters, you can still infer how many clusters are represented
in a finite set of n data points.
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Nonparametric Bayesian Methods (Infinite Models)

We ought not to limit the complexity of our model a priori (e.g. number of hidden
states, number of basis functions, number of mixture components, etc) since we
don’t believe that the real data was actually generated from a statistical model with
a small number of parameters.

Therefore, regardless of how much training data we have, we should consider models
with as many parameters as we can handle computationally.

Here there is no model order selection task:

• No need to compare marginal likelihoods to select model order (which is often
difficult).

• No need to use Occam’s razor to limit the number of parameters in the model.

In fact, we may even want to consider doing inference in models with an infinite
number of parameters...



Why Bayesian Nonparametrics?

• Finite‐dimensional models are low‐dimensional manifolds in 
probability space

• We want distribu.ons with (nearly) full support

Show@
twosimplex,

ParametricPlot3D@geometricmean, 8x, 0, 1<, PlotStyle Ø 8Thick, Green<D,
Graphics3D@8Blue, Sphere@p1, 0.025D<D,
Graphics3D@8Green, Sphere@p0, 0.025D<D,

ContourPlot3D@Log@p1êp0D.8q0, q1, q2< ã -KL@p0, p1D,
8q0, 0, 1<, 8q1, 0, 1<, 8q2, 0, 1<, RegionFunction Ø InSimplex, Mesh Ø NoneD,
ContourPlot3D@Log@p1êp0D.8q0, q1, q2< ã 0, 8q0, 0, 1<, 8q1, 0, 1<,
8q2, 0, 1<, RegionFunction Ø InSimplex, Mesh Ø NoneD,
ContourPlot3D@Log@p1êp0D.8q0, q1, q2< ã KL@p1, p0D, 8q0, 0, 1<,
8q1, 0, 1<, 8q2, 0, 1<, RegionFunction Ø InSimplex, Mesh Ø NoneD,
ContourPlot3D@Log@p1êp0D.8q0, q1, q2< ã KL@p1, p0D + .2, 8q0, 0, 1<,
8q1, 0, 1<, 8q2, 0, 1<, RegionFunction Ø InSimplex, Mesh Ø NoneD

D

2 moregeometry.nb



Nonparametric models as limits

• Look at pudng priors directly on infinite dimensional RKHS

• Start with D component Fourier model
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Figure 1: Left panel: the evidence as a function of an abstract one dimensional represen-
tation of “all possible” datasets. Because the evidence must “normalize”, very complex
models which can account for many datasets only achieve modest evidence; simple models
can reach high evidences, but only for a limited set of data. When a dataset is observed,
the evidence can be used to select between model complexities. Such selection cannot be
done using just the likelihood, . Right panel: neural networks with different
numbers of hidden unit form a family of models, posing the model selection problem.

2 Linear in the parameters models – Example: the Fourier model

For simplicity, consider function approximation using the class of models that are linear in
the parameters; this class includes many well known models such as polynomials, splines,
kernel methods, etc:

where is the scalar output, are the unknown weights (parameters) of the model,

are fixed basis functions, and is the (scalar or vector) input for exam-
ple number . For example, a Fourier model for scalar inputs has the form:

where . Assuming an independent Gaussian prior on the
weights:

where is an overall scale and are precisions (inverse variances) for weights of order
(frequency) . It is easy to show that Gaussian priors over weights imply Gaussian Process
priors over functions3. The covariance function for the corresponding Gaussian Process
prior is:

3Under the prior, the joint density of any (finite) set of outputs is Gaussian
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ple number . For example, a Fourier model for scalar inputs has the form:

where . Assuming an independent Gaussian prior on the
weights:

where is an overall scale and are precisions (inverse variances) for weights of order
(frequency) . It is easy to show that Gaussian priors over weights imply Gaussian Process
priors over functions3. The covariance function for the corresponding Gaussian Process
prior is:

3Under the prior, the joint density of any (finite) set of outputs is Gaussian

Rasmussen&Ghahramani NIPS*2001



S.ll finite, but something amiss
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Figure 3: Functions drawn at random from the Fourier model with order (dark)
and (light) for four different scalings; limiting behaviour from left to right:
discontinuous, Brownian, borderline smooth, smooth.

where , and the tilde indicates duplication of all components except
for the first. We can optimize5 the overall scale of the weights (using eg. Newton’s
method). How do we choose the relative scales, ? The answer to this question turns out
to be intimately related to the two different views of Bayesian inference.

2.2 Example

To illustrate the behaviour of this model we use data generated from a step function that
changes from to corrupted by independent additive Gaussian noise with variance

. Note that the true function cannot be implemented exactly with a model of finite
order, as would typically be the case in realistic modelling situations (the true function is
not “realizable” or the model is said to be “incomplete”). The input points are arranged in
two lumps of and points, the step occurring in the middle of the larger, see figure 2.

If we choose the scaling precisions to be independent of the frequency of the contributions,
(while normalizing the sum of the inverse precisions) we achieve predictions as

depicted in figure 2. We clearly see an Occam’s Razor behaviour. A model order of around
is preferred. One might say that the limited data does not support models more

complex than this. One way of understanding this is to note that as the model order grows,
the prior parameter volume grows, but the relative posterior volume decreases, because
parameters must be accurately specified in the complex model to ensure good agreement
with the data. The ratio of prior to posterior volumes is the Occam Factor, which may be
interpreted as a penalty to pay for fitting parameters.

In the present model, it is easy to draw functions at random from the prior by simply draw-
ing values for the coefficients from their prior distributions. The left panel of figure 3 shows
samples from the prior for the previous example for and . With increasing
order the functions get more and more dominated by high frequency components. In most
modelling applications however, we have some prior expectations about smoothness. By
scaling the precision factors we can achieve that the prior over functions converges to
functions with particular characteristics as grows towards infinity. Here we will focus
on scalings of the form for different values of , the scaling exponent. As an
example, if we choose the scaling we do not get an Occam’s Razor in terms of the
order of the model, figure 4. Note that the predictions and their errorbars become almost
independent of the model order as long as the order is large enough. Note also that the
errorbars for these large models seem more reasonable than for in figure 2 (where a
spurious “dip” between the two lumps of data is predicted with high confidence). With this
choice of scaling, it seems that the “large models” view is appropriate.

5Of course, we ought to integrate over , but unfortunately that is difficult.
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Figure 2: Top: different model orders for the “unscaled” model: . The mean
predictions are shown with a full line, the dashed and dotted lines limit the and
central mass of the predictive distribution (which is student- ). Bottom: posterior probabil-
ity of the models, normalised over the models. The probabilities of the models exhibit
an Occam’s Hill, discouraging models that are either “too small” or “too big”.

2.1 Inference in the Fourier model

Given data with independent Gaussian noise with preci-
sion , the likelihood is:

For analytical convenience, let the scale of the prior be proportional to the noise precision,
and put vague4 Gamma priors on and :

then we can integrate over weights and noise to get the evidence as a function of prior
hyperparameters, (the overall scale) and (the relative scales):

4We choose vague priors by setting throughout.

Parameter scales fixed; model size increasing
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Figure 4: The same as figure 2, except that the scaling was used here, leading to a
prior which converges to smooth functions as . There is no Occam’s Razor; instead
we see that as long as the model is complex enough, the evidence is flat. We also notice
that the predictive density of the model is unchanged as long as is sufficiently large.

3 Discussion

In the previous examples we saw that, depending on the scaling properties of the prior over
parameters, both the Occam’s Razor view and the large models view can seem appropriate.
However, the example was unsatisfactory because it is not obvious how to choose the scal-
ing exponent . We can gain more insight into the meaning of by analysing properties of
functions drawn from the prior in the limit of large . It is useful to consider the expected
squared difference of outputs corresponding to nearby inputs, separated by :

in the limit as . In the table in figure 5 we have computed these limits for various
values of , together with the characteristics of these functions. For example, a property
of smooth functions is that . Using this kind of information may help to
choose good values for in practical applications. Indeed, we can attempt to infer the
“characteristics of the function” from the data. In figure 5 we show how the evidence
depends on and the overall scale for a model of large order ( ). It is seen
that the evidence has a maximum around . In fact we are seeing Occam’s Razor
again! This time it is not in terms of the dimension if the model, but rather in terms of
the complexity of the functions under the priors implied by different values of . Large
values of correspond to priors with most probability mass on simple functions, whereas
small values of correspond to priors that allow more complex functions. Note, that the
“optimal” setting was exactly the model used in figure 4.

Scaling the parameters with model size
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Scaling the parameters with model size

!!"

!!#$%

!!#

!!&$%

!!&

!"'$%

!"'

!"($%

!"(

!")$%

!")

& # " ! * % +

!"$%

!"

!#$%

!#

!&$%

&

,-./012345671418

/7
2
#
&
9:
;

/723<=0>41-439?@"&&A3B.5@!")$*(;

properties

discontinuous
2 Brownian

3 borderline smooth

smooth

Figure 5: Left panel: the evidence as a function of the scaling exponent, and overall scale
, has a maximum at . The table shows the characteristics of functions for different

values of . Examples of these functions are shown in figure 3.

4 Conclusion

We have reviewed the automatic Occam’s Razor for Bayesian models and seen how, while
not necessarily penalising the number of parameters, this process is active in terms of the
complexity of functions. Although we have only presented simplistic examples, the expla-
nations of the behaviours rely on very basic principles that are generally applicable. Which
of the two differing Bayesian views is most attractive depends on the circumstances: some-
times the large model limit may be computationally demanding; also, it may be difficult
to analyse the scaling properties of priors for some models. On the other hand, in typical
applications of non-parametricmodels, the “large model” view may be the most convenient
way of expressing priors since typically, we don’t seriously believe that the “true” gener-
ative process can be implemented exactly with a small model. Moreover, optimizing (or
integrating) over continuous hyperparameters may be easier than optimizing over the dis-
crete space of model sizes. In the end, whichever view we take, Occam’s Razor is always
at work discouraging overcomplex models.
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Figure 4: The same as figure 2, except that the scaling was used here, leading to a
prior which converges to smooth functions as . There is no Occam’s Razor; instead
we see that as long as the model is complex enough, the evidence is flat. We also notice
that the predictive density of the model is unchanged as long as is sufficiently large.

3 Discussion

In the previous examples we saw that, depending on the scaling properties of the prior over
parameters, both the Occam’s Razor view and the large models view can seem appropriate.
However, the example was unsatisfactory because it is not obvious how to choose the scal-
ing exponent . We can gain more insight into the meaning of by analysing properties of
functions drawn from the prior in the limit of large . It is useful to consider the expected
squared difference of outputs corresponding to nearby inputs, separated by :

in the limit as . In the table in figure 5 we have computed these limits for various
values of , together with the characteristics of these functions. For example, a property
of smooth functions is that . Using this kind of information may help to
choose good values for in practical applications. Indeed, we can attempt to infer the
“characteristics of the function” from the data. In figure 5 we show how the evidence
depends on and the overall scale for a model of large order ( ). It is seen
that the evidence has a maximum around . In fact we are seeing Occam’s Razor
again! This time it is not in terms of the dimension if the model, but rather in terms of
the complexity of the functions under the priors implied by different values of . Large
values of correspond to priors with most probability mass on simple functions, whereas
small values of correspond to priors that allow more complex functions. Note, that the
“optimal” setting was exactly the model used in figure 4.
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Figure 2: Top: different model orders for the “unscaled” model: . The mean
predictions are shown with a full line, the dashed and dotted lines limit the and
central mass of the predictive distribution (which is student- ). Bottom: posterior probabil-
ity of the models, normalised over the models. The probabilities of the models exhibit
an Occam’s Hill, discouraging models that are either “too small” or “too big”.

2.1 Inference in the Fourier model

Given data with independent Gaussian noise with preci-
sion , the likelihood is:

For analytical convenience, let the scale of the prior be proportional to the noise precision,
and put vague4 Gamma priors on and :

then we can integrate over weights and noise to get the evidence as a function of prior
hyperparameters, (the overall scale) and (the relative scales):

4We choose vague priors by setting throughout.
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Figure 4: The same as figure 2, except that the scaling was used here, leading to a
prior which converges to smooth functions as . There is no Occam’s Razor; instead
we see that as long as the model is complex enough, the evidence is flat. We also notice
that the predictive density of the model is unchanged as long as is sufficiently large.

3 Discussion

In the previous examples we saw that, depending on the scaling properties of the prior over
parameters, both the Occam’s Razor view and the large models view can seem appropriate.
However, the example was unsatisfactory because it is not obvious how to choose the scal-
ing exponent . We can gain more insight into the meaning of by analysing properties of
functions drawn from the prior in the limit of large . It is useful to consider the expected
squared difference of outputs corresponding to nearby inputs, separated by :

in the limit as . In the table in figure 5 we have computed these limits for various
values of , together with the characteristics of these functions. For example, a property
of smooth functions is that . Using this kind of information may help to
choose good values for in practical applications. Indeed, we can attempt to infer the
“characteristics of the function” from the data. In figure 5 we show how the evidence
depends on and the overall scale for a model of large order ( ). It is seen
that the evidence has a maximum around . In fact we are seeing Occam’s Razor
again! This time it is not in terms of the dimension if the model, but rather in terms of
the complexity of the functions under the priors implied by different values of . Large
values of correspond to priors with most probability mass on simple functions, whereas
small values of correspond to priors that allow more complex functions. Note, that the
“optimal” setting was exactly the model used in figure 4.

Scaling the parameters with model size
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Figure 3: Functions drawn at random from the Fourier model with order (dark)
and (light) for four different scalings; limiting behaviour from left to right:
discontinuous, Brownian, borderline smooth, smooth.

where , and the tilde indicates duplication of all components except
for the first. We can optimize5 the overall scale of the weights (using eg. Newton’s
method). How do we choose the relative scales, ? The answer to this question turns out
to be intimately related to the two different views of Bayesian inference.

2.2 Example

To illustrate the behaviour of this model we use data generated from a step function that
changes from to corrupted by independent additive Gaussian noise with variance

. Note that the true function cannot be implemented exactly with a model of finite
order, as would typically be the case in realistic modelling situations (the true function is
not “realizable” or the model is said to be “incomplete”). The input points are arranged in
two lumps of and points, the step occurring in the middle of the larger, see figure 2.

If we choose the scaling precisions to be independent of the frequency of the contributions,
(while normalizing the sum of the inverse precisions) we achieve predictions as

depicted in figure 2. We clearly see an Occam’s Razor behaviour. A model order of around
is preferred. One might say that the limited data does not support models more

complex than this. One way of understanding this is to note that as the model order grows,
the prior parameter volume grows, but the relative posterior volume decreases, because
parameters must be accurately specified in the complex model to ensure good agreement
with the data. The ratio of prior to posterior volumes is the Occam Factor, which may be
interpreted as a penalty to pay for fitting parameters.

In the present model, it is easy to draw functions at random from the prior by simply draw-
ing values for the coefficients from their prior distributions. The left panel of figure 3 shows
samples from the prior for the previous example for and . With increasing
order the functions get more and more dominated by high frequency components. In most
modelling applications however, we have some prior expectations about smoothness. By
scaling the precision factors we can achieve that the prior over functions converges to
functions with particular characteristics as grows towards infinity. Here we will focus
on scalings of the form for different values of , the scaling exponent. As an
example, if we choose the scaling we do not get an Occam’s Razor in terms of the
order of the model, figure 4. Note that the predictions and their errorbars become almost
independent of the model order as long as the order is large enough. Note also that the
errorbars for these large models seem more reasonable than for in figure 2 (where a
spurious “dip” between the two lumps of data is predicted with high confidence). With this
choice of scaling, it seems that the “large models” view is appropriate.

5Of course, we ought to integrate over , but unfortunately that is difficult.
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Figure 5: Left panel: the evidence as a function of the scaling exponent, and overall scale
, has a maximum at . The table shows the characteristics of functions for different

values of . Examples of these functions are shown in figure 3.

4 Conclusion

We have reviewed the automatic Occam’s Razor for Bayesian models and seen how, while
not necessarily penalising the number of parameters, this process is active in terms of the
complexity of functions. Although we have only presented simplistic examples, the expla-
nations of the behaviours rely on very basic principles that are generally applicable. Which
of the two differing Bayesian views is most attractive depends on the circumstances: some-
times the large model limit may be computationally demanding; also, it may be difficult
to analyse the scaling properties of priors for some models. On the other hand, in typical
applications of non-parametricmodels, the “large model” view may be the most convenient
way of expressing priors since typically, we don’t seriously believe that the “true” gener-
ative process can be implemented exactly with a small model. Moreover, optimizing (or
integrating) over continuous hyperparameters may be easier than optimizing over the dis-
crete space of model sizes. In the end, whichever view we take, Occam’s Razor is always
at work discouraging overcomplex models.

Acknowledgements

This work was supported by the Danish Research Councils through the Computational
Neural Network Center (CONNECT) and the THOR Center for Neuroinformatics. Thanks
to Geoff Hinton for asking a puzzling question which stimulated the writing of this paper.

References

Jefferys, W. H. & Berger, J. O. (1992) Ockham’s Razor and Bayesian Analysis. Amer. Sci., 80:64–72.

MacKay, D. J. C. (1992) Bayesian Interpolation. Neural Computation, 4(3):415–447.

Neal, R. M. (1996) Bayesian Learning for Neural Networks, Lecture Notes in Statistics No. 118,
New York: Springer-Verlag.

Rasmussen, C. E. (2000) The Infinite Gaussian Mixture Model, in S. A. Solla, T. K. Leen and
K.-R. Müller (editors.), Adv. Neur. Inf. Proc. Sys. 12, MIT Press, pp. 554–560.

Smith, A. F. M. & Spiegelhalter, D. J. (1980) Bayes factors and choice criteria for linear models.
J. Roy. Stat. Soc., 42:213–220.



all the chapters

are available online!

The GP Bible (for ML folk)

Moghaddam



Take‐home

• Inference in Nonparametric models does not require model 
selec.on as there are an infinite number of parameters to fit

• Nonparametric models essen.ally turn a structure learning 
problem (how many components) into a parameter es.ma.on 
problem

• Gaussian Processes are a fully Bayesian alterna.ve to RLS
Provides error bars on predic.ons; marginal likelihood tractable
Structure in the kernel induces structure in the output
Kernel composi.on laws provide a rich space of models
Cubic/training, linear/test performance

• A Bayesian machine learning approach explicitly models 
uncertainty by trea.ng unknown variables as random
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