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About this class

The goal of this class is to introduce a mathematical counterpart to the
visual cortex model described in the previous two lectures.

In particular:

We give a recursive definition of a similarity concept for images, and
describe the underlying hierarchical architecture.

We briefly describe some theoretical analyses and preliminary
empirical results.

We’ll spend most of the time establishing a formalism that can be used to
explore deeper questions. This is half the battle... (cf. wavelets)

The material in this class is from:
S. Smale, L. Rosasco, J. Bouvrie, A. Caponnetto, and T. Poggio. “Mathematics of the

Neural Response”, CBCL Paper #276/MIT CSAIL Technical Report #TR2008-070,

November, 2008
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Hierarchical/Deep Learning: Empirical Motivation
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9-class digits problem, nearest neighbor classifier, Euclidean distance vs. 3-layer derived

distance (u = 12, v = 20, 500 templates/layer, 3-pixel image translations).
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Why Hierarchical/Deep Learning?

Chomsky’s poverty of the stimulus argument: biological organisms can learn
complex concepts and tasks from extraordinarily small empirical samples.

Hypothesis: hierarchically organized circuits found in the human brain
facilitate robust learning from few examples via the discovery of invariances,
while promoting circuit modularity and reuse of redundant sub-circuits,
leading also to greater energy and space efficiency.

Why do recent hierarchical models in vision work? Interpreting them can be
perhaps as hard as interpreting the brain itself. We need a theory.
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Why Hierarchical/Deep Learning?

We are interested primarily in understanding invariance and discrimination
properties of unsupervised hierarchies as a step towards answering larger
questions, such as

1 When and why is a “deep” architecture preferred?

2 For tasks that can be decomposed into a hierarchy of parts, how can
we show that a supervised classifier trained using a hierarchical
feature map will generalize better than an off-the-shelf
non-hierarchical alternative?

3 Can we understand and cast learning in hierarchies using tools from
statistical learning theory?
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Towards a Theory

We will borrow concepts and
operations underlying the
visual cortex model.
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Defining a model

The ingredients needed to define the derived kernel consist of:

A finite architecture of nested domains. We’ll call them patches.

A suitable family of function spaces defined on each patch.

A set of transformations defined on patches.

A set of templates which connect the mathematical model to a real
world setting.
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An Architecture of Patches

We first consider an architecture composed of three layers of patches: u, v
and Sq in R2, with u ⊂ v ⊂ Sq,

Figure: Nested patch domains.Jake Bouvrie (MIT 9.520 Class 23) Derived Kernels and the Neural Response May 4 2009 11 / 59



Images as Functions

We consider a function space on Sq, denoted by

Im(Sq) = {f : Sq → [0, 1]},

as well as the function spaces Im(u), Im(v) defined on subpatches u, v,
respectively.

Functions can be interpreted as grey scale images when working with a
vision problem for example.
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Transformations

Next, we assume a set Hu of
transformations that are maps
from the smallest patch to the
next larger patch

h : u→ v.

Similarly Hv with h : v → Sq.

The sets of transformations are assumed to be finite.

These transformations act on the domain of a function (image).
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Examples

Examples of transformations are translations, scalings and rotations...

Translations and Scalings

we have transformations of the form h = hβhα with

hα(x) = αx, and hβ(x′) = x′ + β,

where α ∈ R and β ∈ R2 is such that hβhα(u) ⊂ v.
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Interpretation

In the vision interpretation, a translation h can be thought of as moving
the image over the “receptive field” v

Figure: A transformation “restricts” an image to a specific patch.
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Templates

Template sets are finite,
Tu ⊂ Im(u) and Tv ⊂ Im(v)

they are image patches
sampled from some set of
unlabeled images.

link the mathematical
development to real world
problems.

The space of images can be endowed with a “mother” probability measure
ρ. Templates can be seen as images frequently encountered in the early
stages of life.

Jake Bouvrie (MIT 9.520 Class 23) Derived Kernels and the Neural Response May 4 2009 16 / 59



Reproducing Kernel

Given a set X, a function K : X ×X → R is a reproducing kernel if it is a
symmetric and positive definite kernel, i.e.

n∑
i,j=1

αiαjK(xi, xj) ≥ 0,

for any n ∈ N, x1, . . . , xn ∈ X and α1, . . . , αn ∈ R.
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Dot Products and Feature map

Consider a feature
map:

Φ : X → F

Inner product kernels are an instance of reproducing kernels:

K(x, x′) = 〈Φ(x),Φ(x′)〉

is a reproducing kernel.
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Normalization

We assume K(x, x) 6= 0 for all x ∈ X and let

K̂(x, x′) =
K(x, x′)√

K(x, x)K(x′, x′)
.

Clearly K̂ is a reproducing kernel and K̂(x, x) ≡ 1 for all x ∈ X.

Allows interpretation of and comparison between different instances.

Is nice for correspondence with a distance.
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On the normalization

To make sense of the normalization we rule out the functions such that
K(f, f) is zero.

This assumption is quite natural in the context of images:

If K(f, f) is zero, the neural responses of f is identically zero at all
possible templates by definition:

“one can’t see the contents of the image”.
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Derived Kernel and Neural Response

Construction

We’ll give a bottom-up description of a three layer architecture before
giving the general recursive definition.
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Initial Kernel

Consider a normalized non-negative valued reproducing kernel on
Im(u)× Im(u) denoted by K̂u(f, g).

example

Consider the inner product of square integrable functions on u

Ku(f, g) =
∫
u
f(x)g(x)dx.
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Neural Response

We define the neural response of f at t:

Nv(f)(t) = max
h∈H

K̂u(f ◦ h, t),

where f ∈ Im(v), t ∈ Tu and H = Hu.

NOTE: f is not the whole image here.
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Neural Response (cont.)

By denoting with N = |Tu| the cardinality of the template set Tu, we can
interpret the neural response as a vector in RN ,

f ∈ Im(v) 7−→ (Nv(f)(t1), Nv(f)(t2), . . . , Nv(f)(tN )).

This is just the collection of best responses of each template

within the sub-patch f ∈ Im(v) .

If Ku is the Euclidean dot-product, and Hu is all translations: compare to
normalized cross-correlation.
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Derived Kernel

The derived kernel is just the corresponding inner product in
L2(Tu) = R|Tu| between neural responses, normalized by 1

|Tu|

The derived kernel on Im(v)× Im(v) is defined as

Kv(f, g) = 〈Nv(f), Nv(g)〉L2(Tu),

and can be normalized to obtain the kernel K̂v.

This is the correlation in the pattern of similarities to templates.
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Second Layer

We now repeat the process:

second layer neural response

NSq(f)(t) = max
h∈H

K̂v(f ◦ h, t),

where f ∈ Im(Sq), t ∈ Tv and H = Hv.

derived kernel on Im(Sq)× Im(Sq)

KSq(f, g) = 〈NSq(f), NSq(g)〉L2(Tv),

where 〈·, ·〉L2(Tv) is the L2 inner product.

As before, we normalize KSq to obtain the final derived kernel K̂Sq.
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Recursive Definition

For a general n layer architecture v1 ⊂ v2 ⊂ · · · ⊂ vn = Sq, let Kn = Kvn

and Hn = Hvn , Tn = Tvn .

Definition

Given a non-negative valued, normalized, reproducing kernel K̂1, the
m-layer derived kernel K̂m, m = 2, . . . , n, is obtained by normalizing

Km(f, g) = 〈Nm(f), Nm(g)〉L2(Tm−1)

where
Nm(f)(t) = max

h∈H
K̂m−1(f ◦ h, t), t ∈ Tm−1

with H = Hm−1.
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Neural Response

The normalized neural response provides a representation for any function
f ∈ Im(Sq).

f ∈ Im(Sq)︸ ︷︷ ︸
input

7−→ N̂Sq(f) ∈ L2(T ) = R|T |︸ ︷︷ ︸
output

,

with T = Tn−1.

The normalization for N is that implied by the normalization of K:

N̂(f) =
N(f)

‖N(f)‖L2(T )

where ‖x‖L2(T ) =
√
〈x, x〉L2(T ) =

√
1
|T |〈x, x〉R|T | .
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Neural Response Properties

Properties

We’ll now describe properties emerging out of the previous definitions.
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Derived Distance

The derived kernel naturally defines a derived distance d on the space of
images.

d2(f, g) = ‖N̂(f)− N̂(g)‖2 = 2
(
1− K̂(f, g)

)
(since K̂(f, f) = 1 for all f)
Clearly, as the kernel “similarity” approaches its maximum value of 1, the
distance goes to 0.
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The Neural Response is a Self Consistent Definition

The neural response at a given layer can be expressed in terms of the
neural responses at the previous layer

NSq(f)(t) = max
h∈H

K̂v(f ◦ h, t)

= max
h∈H

〈
N̂v(f ◦ h), N̂v(t)

〉
L2(T ′)

, t ∈ T

with H = Hv, T ′ = Tu and T = Tv.
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The Neural Response is a Self Consistent Definition

In vector notation,

NSq(f) =

 maxh∈H

〈
N̂v(f◦h),N̂v(t1)

〉
L2(T ′)

...
maxh∈H

〈
N̂v(f◦h),N̂v(t|T |)

〉
L2(T ′)


= max

h∈H


← N̂v(t1) →

...
← N̂v(t|T |) →

 N̂v(f ◦ h)


=: max

h∈H

{
ΠvN̂v(f ◦ h)

}
where the max operation is assumed to apply elementwise.
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Encoding Operator

The operator Πv is seen as a |Tv| × |Tu| matrix: each row of the matrix
Πv is the (normalized) neural response of a template t ∈ Tv, so that

(Πv)t,t′ = N̂v(t)(t′)

with t ∈ Tv and t′ ∈ Tu.

We can also define Πv : L2(Tu)→ L2(Tv) more abstractly, by saying

(ΠvF )(t) = 〈N̂v(t), F 〉L2(Tu)

for F ∈ L2(Tu), t ∈ Tv.
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Encoding Operator

NSq(f) = max
h∈H

{
ΠvN̂v(f ◦ h)

}

This perspective highlights the action of the hierarchy as alternating
pooling and filtering steps, realized by the max and the Π operators
respectively.
We can integrate unsupervised learning into the model via the Π
operators. For example,

A new Π can be constructed from the PCA decomposition of the
original Π.

Π could be represented in terms of the eigenfunctions of the
Laplacian.

Sparse representations can be enforced (cf. sparse coding ideas in
computational neuroscience and signal processing).
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Neural Response vs. Simple and Complex Cells

The two key steps in the definition of neural response correspond to simple
and complex cells in the visual cortex (and the CBCL model):

S: inner products with the templates.

C: max over the set of translations.
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Simple Cells at the First Layer

Given an initial kernel Ku, let

NS1(f ◦ h)(t) = Ku(f ◦ h, t)

with f ∈ Im(v), h ∈ Hu and t ∈ Tu.

NS1(f ◦ h)(t) corresponds to the response of an S1 cell with template t
and receptive field h ◦ u.

The operations underlying the definition of S1 can be thought of as
“normalized convolutions”.
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Complex Cells at the First Layer

The neural response is given by

NC1(f)(t) = max
h∈H
{NS1(f ◦ h)(t)}

with f ∈ Im(v), H = Hu and t ∈ Tu so that NC1 : Im(v)→ R|Tu|.

NC1(f)(t) corresponds to the response of a C1 cell with template t and
receptive field corresponding to v.
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Gaussian Tuning

In the model gaussian tuning can replace normalization.
This latter case corresponds to considering

G(f, g) = e−γd
2(f,g),

where we used the (derived) distance

d2(f, g) = K(f, f)− 2K(f, g) +K(g, g),

where K = Kw or K = KSq.
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Theoretical Analysis

Formulating the model in careful, mathematical terms was the first step
towards a comprehensive theory.
Now we can start looking at invariance, discrimination, and other
properties that emerge from our definitions:

selectivity vs invariance

sample complexity/poverty of the stimulus

model selection questions
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Invariance of the Neural Response

We can consider invariance of the (normalized) neural response with
respect to some set of domain transformations

R = {r | r : v → v}.

Invariance

N̂(f) = N̂(f ◦ r)

(or equivalently K̂n(f ◦ r, f) = 1).

Translations are cheap, but adding more explicit transformations to H gets
expensive...
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Assumption

Assumption

For all r ∈ R, and h ∈ H, there exists a unique h′ ∈ H such that

r ◦ h = h′ ◦ r

and there exists a unique h′′ ∈ H such that

h ◦ r = r ◦ h′′ .

...can be expressed in terms of orbits of translations under the action of
conjugation by e.g. elements of the groups On or SOn.
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Assumption

In the case of vision for example, we can think of R as reflections and H
as translations:

The assumption says that reflecting an image and then taking a restriction
is equivalent to first taking a (different) restriction and then reflecting the
resulting image patch.
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Invariance

Theorem

If the initial kernel satisfies K̂1(f, f ◦ r) = 1 for all r ∈ R, f ∈ Im(v1),
then

N̂m(f) = N̂m(f ◦ r),

for all r ∈ R, f ∈ Im(vm) and m ≤ n.

Global invariance from local invariance!
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Image Reflections and Rotations

Reflections & Rotations

For patches which are discs in R2 let

Ref = {ref = refθ | θ ∈ [0, 2π)}

be the set of coordinate reflections about lines passing through the origin
at angle θ.
Moreover, let Rot denote the space of coordinate rotations about the
origin.
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Invariance to Reflections and Rotations

Assume that the spaces H at all layers contain all possible translations and
K̂1(f, f ◦ ref) = 1, for all ref ∈ Ref , f ∈ Im(v1)

Theorem

Then
N̂m(f) = N̂m(f ◦ ref),

for all ref ∈ Ref , f ∈ Im(vm) with m ≤ n. Moreover under the same
assumptions

N̂m(f) = N̂m(f ◦ rot),

for all rot ∈ Rot, f ∈ Im(vm) with m ≤ n.
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One dimensional strings

An n-string is a function from an index set {1, . . . , n} to some finite
alphabet S.

Patches that are sets of indices vm = {1, . . . , `}, m ≤ n.

Function spaces Im(vm) are strings of length m. The first layer
consists of single characters.

We consider the initial kernel

K̂1(f, g) =

{
1 if f = g,

0 otherwise
,

where f, g ∈ S.
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Invariance to reversal

Let r : {1, . . . ,m} → {1, . . . ,m} denote reversal of a string.

Theorem

If the spaces H at all layers contain all possible translations then

N̂m(f) = N̂m(f ◦ r),

for all f ∈ Im(vm) with m ≤ n.
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Discrimination Results (opposite of invariance)

Consider an exhaustive architecture: vm = {1, . . . ,m},
Tm = Im(vm) = Sm, for m = 1, . . . , n and transformations are all possible
translations. Take the maximum number of layers, n− 1 for length n
input.

Theorem

If f, g are n-strings and K̂n(f, g) = 1 then:

f, g are the same string

one is the reversal of the other

f, g are the “checkerboard” pattern: f = ababa · · · , g = babab · · · ,
with f and g odd length strings.

What happens with other architectures?

Jake Bouvrie (MIT 9.520 Class 23) Derived Kernels and the Neural Response May 4 2009 50 / 59



Discrimination Results (opposite of invariance)

Consider an exhaustive architecture: vm = {1, . . . ,m},
Tm = Im(vm) = Sm, for m = 1, . . . , n and transformations are all possible
translations. Take the maximum number of layers, n− 1 for length n
input.

Theorem

If f, g are n-strings and K̂n(f, g) = 1 then:

f, g are the same string

one is the reversal of the other

f, g are the “checkerboard” pattern: f = ababa · · · , g = babab · · · ,
with f and g odd length strings.

What happens with other architectures?

Jake Bouvrie (MIT 9.520 Class 23) Derived Kernels and the Neural Response May 4 2009 50 / 59



Discrimination Results (opposite of invariance)

Consider an exhaustive architecture: vm = {1, . . . ,m},
Tm = Im(vm) = Sm, for m = 1, . . . , n and transformations are all possible
translations. Take the maximum number of layers, n− 1 for length n
input.

Theorem

If f, g are n-strings and K̂n(f, g) = 1 then:

f, g are the same string

one is the reversal of the other

f, g are the “checkerboard” pattern: f = ababa · · · , g = babab · · · ,
with f and g odd length strings.

What happens with other architectures?

Jake Bouvrie (MIT 9.520 Class 23) Derived Kernels and the Neural Response May 4 2009 50 / 59



Discrimination Results (opposite of invariance)

Consider an exhaustive architecture: vm = {1, . . . ,m},
Tm = Im(vm) = Sm, for m = 1, . . . , n and transformations are all possible
translations. Take the maximum number of layers, n− 1 for length n
input.

Theorem

If f, g are n-strings and K̂n(f, g) = 1 then:

f, g are the same string

one is the reversal of the other

f, g are the “checkerboard” pattern: f = ababa · · · , g = babab · · · ,
with f and g odd length strings.

What happens with other architectures?

Jake Bouvrie (MIT 9.520 Class 23) Derived Kernels and the Neural Response May 4 2009 50 / 59



Plan

1 Background
2 Derived Kernels and the Neural Response

3 Connection to Neuroscience

4 Theoretical Analysis

5 Empirical Analysis

Jake Bouvrie (MIT 9.520 Class 23) Derived Kernels and the Neural Response May 4 2009 51 / 59



Motivation

The work described thus far was motivated in part by a desire to
understand the empirical success of recent models of visual cortex.

The simplified setting we considered trades complexity and
faithfulness to biology for a more controlled, analytically tractable
framework.
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Implementation

A direct implementation of the architecture following the recursive
definition of the derived kernel appears to be exponential in the number of
layers.

A bottom-up algorithm linear in the number of layers can be obtained by
consolidating and reordering the computations.
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Classification Task

Sq = 28× 28 pixel grayscale images from the MNIST dataset of
handwritten digits

eight classes of images: 2s through 9s

training sets contain 5 examples per class, test sets contain 30
examples per class

1-NN classifier

results averaged over 50 random trials
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Patch sizes?
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Patch sizes? (cont.)
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Confusion Matrix
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Matrices of pairwise 3-Layer derived distances (left) and L2 distances
(right) for the set of 240 images from the database. Each group of 30
rows/columns correspond to images of the digits 2 through 9, in left-right
and top-bottom order.
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Number of Layers?
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The results at zero confirm that the hierarchical assumption holds.
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Summary

We provided a compact mathematical description of a hierarchical
model, based on recent feedforward models of the visual cortex.

A similarity kernel was recursively defined

Analysis of invariance/discrimination properties was provided.

Theory is just at the beginning and many questions remain.
For example:

Can we show that more layers are better than one? When? Sample
complexity...

Can we learn the templates (rather then just sample them)?

Is the max operation really crucial? Can it be replaced by some other
operation (average...)?

Discrimination/Invariance properties vs. architecture. Parameter
choices are theory questions.
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