
2007 projects (if good results then conference
paper)

Pr. 1.1 Experiment with RLS, measuring training, testing and LOO performance as a
function of λ, σ on UCI data and possibly synthetic data (to be able to compare
to expected error) [RIF]

Pr 1.3 Implement and test a ”large-scale” nonlinear RLS, using and expanding the
ideas discussed in class. [RIF]

Pr 1.4 When does overfitting occur? Describe some specific examples (such as the
leukemia data). Analyze. Could learning a kernel overfit? Do theoretical
analysis (difficult) or empirical experiments. [RIF+TP]

Pr 1.5 (a) Why Reproducing Kernel Hilbert Spaces are a natural set of hypothesis
spaces for supervised learning? Give a general, mathematical argument.

(b) Use Sobolev emebedding lemma to argue that the requirement above im-
plies smoothness of the h ypothesis space

Pr 1.6 Analyze theoretically uniform stability for Gaussian kernels as a function of λ, σ.
[RIF]

Pr 1.7 Laplacian RLS: stability wrt unlabeled data, performance as a function of n,
number of unlabeled data points. [Lorenzo, RIF]



2007: other projects

1. Sparsity: representation (or reconstruction or interpretation) and generaliza-
tion? Is sparsity “good” for learning, namely for generalization? Study the
connections between sparsity and generalization using the tools of stability. Al-
ternatively describe possible connections between a) sparse representations, b)
information theory (compression, see Warmuth paper) c) capacity constraints
on hypothesis space (VC-dimension etc.) d) NMF [JAKE, Lorenzo,TP]

2. Describe learning of parameters (possibly including dimensionality reduction us-
ing Laplacian eigenfunctions and clustering) for a stochastic dynamical system
using the framework of Coiffman’s diffusion maps.



2007: other projects

1. Derive and test in simulations data-mining bound: Roughly speaking, if you
try k models on l (validation set) points, then for all k models uniformly with

probability 1 − η: TestError ≤ ValidationError +
√

((log(K)−log(η))
l)

Clearly this

holds also for the one of the k machines you choose (one would choose the
one with the smallest validation error).

2. Discuss ideas for algorithms based on maximizing stability of the algorithm at
the predicted point and minimizing empirical error [TP]

3. (suggested by Steve Smale) Approximate indicator functions with kernels from
a RKHS with very little smoothness. Calculate approx and sample error us-
ing bounds such as Cucker Smale etc.. Verify with computer simulations.
[TP+RIF]

4. Exploit fast algoritm for NN (Indyk’s algorithms, improved fast Gauss trans-
forms ....) [RIF]

5. Variable selection. Measure effect of noise variables... [RIF,JAKE?]



2007: Computational Neuroscience-type
projects

1. Describe a few plausible neural circuit for Gaussian tuning

2. Do specific experiments in object recognition (eg on Catlech 256,...) with the
model described in Class 18, 19 and in Serre, T., L. Wolf, S. Bileschi, M.
Riesenhuber and T. Poggio. Object Recognition with Cortex-like Mechanisms,
IEEE Transactions on Pattern Analysis and Machine Intelligence, 29, 3, 411-
426, 2007 (software available on the Web). We may provide the output of
the top level of the model (before the classifier) and you may try different
classifiers and different supervised and semisupervised schemes. [Serre, tp]

3. Use the software provided by Jim Mutch to experiment with biologically inspired
systems for object recognition by changing parameters in the basic implemen-
tation above (eg number of layers, form of the 2 basic functions, etc.) [Mutch,
tp]



2007: Review-type projects

1. Review: Vector valued RKHS: Micchelli and Pontil, describe applications

2. Review: recent approaches to prediction of time series (advice: avoid financial
time series). Review approaches based on combination of classifiers for time
series prediction – such as mixture of Gaussians (see Gerschefeld Nature paper,
January 28, 1999)

3. Review: techniques to transform a variable length input vector into a fixed
length one. What is an acceptable set of measurements? Consider in particular
time series.

4. Review: Core Vector Machines: review very fast SVM-like algorithms.

5. Review/analyze use of GPUs for SVM implementations.


