Functional Analysis Review

Lorenzo Rosasco
-slides courtesy of Andre Wibisono

9.520: Statistical Learning Theory and Applications

September 9, 2013
(1) Vector Spaces
(2) Hilbert Spaces
(3) Functionals and Operators (Matrices)

4 Linear Operators

Vector Space

- A vector space is a set V with binary operations

$$
+: \mathrm{V} \times \mathrm{V} \rightarrow \mathrm{~V} \text { and } \quad \cdot: \mathbb{R} \times \mathrm{V} \rightarrow \mathrm{~V}
$$

such that for all $\mathrm{a}, \mathrm{b} \in \mathbb{R}$ and $v, w, \mathrm{x} \in \mathrm{V}$:
(1) $v+w=w+v$
(2) $(v+w)+x=v+(w+x)$
(3) There exists $0 \in \mathrm{~V}$ such that $v+0=v$ for all $v \in \mathrm{~V}$
(1) For every $v \in \mathrm{~V}$ there exists $-v \in \mathrm{~V}$ such that $v+(-v)=0$
(6) $a(b v)=(a b) v$
(6) $1 v=v$
(1) $(a+b) v=a v+b v$
(8) $\mathrm{a}(v+w)=\mathrm{a} v+\mathrm{a} w$

Vector Space

- A vector space is a set V with binary operations

$$
+: \mathrm{V} \times \mathrm{V} \rightarrow \mathrm{~V} \text { and } \quad \cdot: \mathbb{R} \times \mathrm{V} \rightarrow \mathrm{~V}
$$

such that for all $\mathrm{a}, \mathrm{b} \in \mathbb{R}$ and $v, w, \mathrm{x} \in \mathrm{V}$:
(1) $v+w=w+v$
(2) $(v+w)+x=v+(w+x)$
(3) There exists $0 \in \mathrm{~V}$ such that $v+0=v$ for all $v \in \mathrm{~V}$
(1) For every $v \in \mathrm{~V}$ there exists $-v \in \mathrm{~V}$ such that $v+(-v)=0$
(6) $a(b v)=(a b) v$
(6) $1 v=v$
(1) $(a+b) v=a v+b v$
(8) $\mathfrak{a}(v+w)=\mathrm{a} v+\mathrm{a} w$

- Example: \mathbb{R}^{n}, space of polynomials, space of functions.

Basis

- $\mathrm{B}=\left\{v_{1}, \ldots, v_{\mathrm{n}}\right\}$ is a basis of V if every $v \in \mathrm{~V}$ can be uniquely decomposed as

$$
v=\mathrm{a}_{1} v_{1}+\cdots+\mathrm{a}_{\mathrm{n}} v_{\mathrm{n}}
$$

for some $a_{1}, \ldots, a_{n} \in \mathbb{R}$.

Basis

- $\mathrm{B}=\left\{v_{1}, \ldots, v_{\mathrm{n}}\right\}$ is a basis of V if every $v \in \mathrm{~V}$ can be uniquely decomposed as

$$
v=\mathrm{a}_{1} v_{1}+\cdots+\mathrm{a}_{\mathrm{n}} v_{\mathrm{n}}
$$

for some $a_{1}, \ldots, a_{n} \in \mathbb{R}$.

- An orthonormal basis is a basis that is orthogonal $\left(\left\langle v_{\mathfrak{i}}, v_{\mathfrak{j}}\right\rangle=0\right.$ for $\left.\mathfrak{i} \neq \mathfrak{j}\right)$ and normalized $\left(\left\|v_{\mathfrak{i}}\right\|=1\right)$.

Norm

- Can define norm from inner product: $\|v\|=\langle v, v\rangle^{1 / 2}$.

Norm

- A norm is a function $\|\cdot\|: \mathrm{V} \rightarrow \mathbb{R}$ such that for all $\mathrm{a} \in \mathbb{R}$ and $v, w \in \mathrm{~V}$:
(1) $\|v\| \geqslant 0$, and $\|v\|=0$ if and only if $v=0$
(2) $\|a v\|=|a|\|v\|$
(3) $\|v+w\| \leqslant\|v\|+\|w\|$
- Can define norm from inner product: $\|v\|=\langle v, v\rangle^{1 / 2}$.

Metric

- Can define metric from norm: $\mathrm{d}(v, w)=\|v-w\|$.

Metric

- A metric is a function $\mathrm{d}: \mathrm{V} \times \mathrm{V} \rightarrow \mathbb{R}$ such that for all $v, w, x \in \mathrm{~V}$:
(1) $\mathrm{d}(v, w) \geqslant 0$, and $\mathrm{d}(v, w)=0$ if and only if $v=w$
(2) $\mathrm{d}(v, w)=\mathrm{d}(w, v)$
(3) $\mathrm{d}(v, w) \leqslant \mathrm{d}(v, x)+\mathrm{d}(x, w)$
- Can define metric from norm: $\mathrm{d}(v, w)=\|v-w\|$.

Inner Product

- An inner product is a function $\langle\cdot, \cdot\rangle: \mathrm{V} \times \mathrm{V} \rightarrow \mathbb{R}$ such that for all $\mathrm{a}, \mathrm{b} \in \mathbb{R}$ and $v, w, x \in \mathrm{~V}$:

Inner Product

- An inner product is a function $\langle\cdot, \cdot \cdot\rangle: \mathrm{V} \times \mathrm{V} \rightarrow \mathbb{R}$ such that for all $\mathrm{a}, \mathrm{b} \in \mathbb{R}$ and $v, w, x \in \mathrm{~V}$:
(1) $\langle v, w\rangle=\langle w, v\rangle$
(2) $\langle\mathrm{a} v+\mathrm{b} w, \mathrm{x}\rangle=\mathrm{a}\langle v, \mathrm{x}\rangle+\mathrm{b}\langle w, \mathrm{x}\rangle$
(8) $\langle v, v\rangle \geqslant 0$ and $\langle v, v\rangle=0$ if and only if $v=0$.

Inner Product

- An inner product is a function $\langle\cdot, \cdot\rangle: \mathrm{V} \times \mathrm{V} \rightarrow \mathbb{R}$ such that for all $\mathrm{a}, \mathrm{b} \in \mathbb{R}$ and $v, w, \mathrm{x} \in \mathrm{V}$:
(1) $\langle v, w\rangle=\langle w, v\rangle$
(2) $\langle\mathrm{a} v+\mathrm{b} w, \mathrm{x}\rangle=\mathrm{a}\langle v, \mathrm{x}\rangle+\mathrm{b}\langle w, \mathrm{x}\rangle$
(3) $\langle v, v\rangle \geqslant 0$ and $\langle v, v\rangle=0$ if and only if $v=0$.
- $v, w \in \mathrm{~V}$ are orthogonal if $\langle v, w\rangle=0$.

Inner Product

- An inner product is a function $\langle\cdot, \cdot\rangle: \mathrm{V} \times \mathrm{V} \rightarrow \mathbb{R}$ such that for all $\mathrm{a}, \mathrm{b} \in \mathbb{R}$ and $v, w, \mathrm{x} \in \mathrm{V}$:
(1) $\langle v, w\rangle=\langle w, v\rangle$
(2) $\langle\mathrm{a} v+\mathrm{b} w, \mathrm{x}\rangle=\mathrm{a}\langle v, \mathrm{x}\rangle+\mathrm{b}\langle w, \mathrm{x}\rangle$
(3) $\langle v, v\rangle \geqslant 0$ and $\langle v, v\rangle=0$ if and only if $v=0$.
- $v, w \in \mathrm{~V}$ are orthogonal if $\langle v, w\rangle=0$.
- Given $\mathrm{W} \subseteq \mathrm{V}$, we have $\mathrm{V}=\mathrm{W} \oplus \mathrm{W}^{\perp}$, where $W^{\perp}=\{v \in \mathrm{~V} \mid\langle v, w\rangle=0$ for all $w \in W\}$.

Inner Product

- An inner product is a function $\langle\cdot, \cdot\rangle: \mathrm{V} \times \mathrm{V} \rightarrow \mathbb{R}$ such that for all $\mathrm{a}, \mathrm{b} \in \mathbb{R}$ and $v, w, \mathrm{x} \in \mathrm{V}$:
(1) $\langle v, w\rangle=\langle w, v\rangle$
(2) $\langle\mathrm{a} v+\mathrm{b} w, \mathrm{x}\rangle=\mathrm{a}\langle v, \mathrm{x}\rangle+\mathrm{b}\langle w, \mathrm{x}\rangle$
(3) $\langle v, v\rangle \geqslant 0$ and $\langle v, v\rangle=0$ if and only if $v=0$.
- $v, w \in \mathrm{~V}$ are orthogonal if $\langle v, w\rangle=0$.
- Given $\mathrm{W} \subseteq \mathrm{V}$, we have $\mathrm{V}=\mathrm{W} \oplus \mathrm{W}^{\perp}$, where $W^{\perp}=\{v \in \mathrm{~V} \mid\langle v, w\rangle=0$ for all $w \in W\}$.
- Cauchy-Schwarz inequality: $\langle v, w\rangle \leqslant\langle v, v\rangle^{1 / 2}\langle w, w\rangle^{1 / 2}$.

（1）Vector Spaces

（2）Hilbert Spaces

（3）Functionals and Operators（Matrices）

4 Linear Operators

Hilbert Space, overview

- Goal: to understand Hilbert spaces (complete inner product spaces) and to make sense of the expression

$$
\mathrm{f}=\sum_{\mathfrak{i}=1}^{\infty}\left\langle\mathrm{f}, \phi_{\mathfrak{i}}\right\rangle \phi_{\mathfrak{i}}, \quad \mathrm{f} \in \mathcal{H}
$$

- Need to talk about:
(1) Cauchy sequence
(2) Completeness
(3) Density
(1) Separability

Hilbert Space

- A Hilbert space is a complete inner product space.

Completeness

- A normed vector space V is complete if every Cauchy sequence converges.

Cauchy Sequence

- Recall: $\lim _{n \rightarrow \infty} x_{n}=x$ if for every $\epsilon>0$ there exists $N \in \mathbb{N}$ such that $\left\|x-x_{n}\right\|<\epsilon$ whenever $\mathfrak{n} \geqslant \mathbb{N}$.

Cauchy Sequence

- Recall: $\lim _{n \rightarrow \infty} x_{n}=x$ if for every $\epsilon>0$ there exists $N \in \mathbb{N}$ such that $\left\|x-x_{n}\right\|<\epsilon$ whenever $n \geqslant \mathbb{N}$.
- $\left(x_{n}\right)_{n \in \mathbb{N}}$ is a Cauchy sequence if for every $\epsilon>0$ there exists $N \in \mathbb{N}$ such that $\left\|x_{m}-x_{n}\right\|<\epsilon$ whenever $m, n \geqslant N$.

Cauchy Sequence

- Recall: $\lim _{n \rightarrow \infty} x_{n}=x$ if for every $\epsilon>0$ there exists $N \in \mathbb{N}$ such that $\left\|x-x_{n}\right\|<\epsilon$ whenever $n \geqslant \mathbb{N}$.
- $\left(x_{n}\right)_{n \in \mathbb{N}}$ is a Cauchy sequence if for every $\epsilon>0$ there exists $N \in \mathbb{N}$ such that $\left\|x_{m}-x_{n}\right\|<\epsilon$ whenever $m, n \geqslant N$.
- Every convergent sequence is a Cauchy sequence (why?)

Completeness

- A normed vector space V is complete if every Cauchy sequence converges.
- Examples:
(1) \mathbb{Q} is not complete.
(2) \mathbb{R} is complete (axiom).
(3) \mathbb{R}^{n} is complete.
(1) Every finite dimensional normed vector space (over \mathbb{R}) is complete.

Hilbert Space

- A Hilbert space is a complete inner product space.
- Examples:
(1) \mathbb{R}^{n}
(2) Every finite dimensional inner product space.
(3) $\ell_{2}=\left\{\left(a_{n}\right)_{n=1}^{\infty} \mid a_{n} \in \mathbb{R}, \sum_{n=1}^{\infty} a_{n}^{2}<\infty\right\}$
(1) $\mathrm{L}_{2}([0,1])=\left\{\mathrm{f}:[0,1] \rightarrow \mathbb{R} \mid \int_{0}^{1} \mathrm{f}(\mathrm{x})^{2} \mathrm{~d} x<\infty\right\}$

Orthonormal Basis

- A Hilbert space has a countable orthonormal basis if and only if it is separable.
- Can write:

$$
\mathrm{f}=\sum_{i=1}^{\infty}\left\langle\mathrm{f}, \phi_{i}\right\rangle \phi_{i} \text { for all } \mathrm{f} \in \mathcal{H}
$$

Density

- Y is dense in X if $\bar{Y}=X$.

Density

- Y is dense in X if $\bar{Y}=X$.
- Examples:
(1) \mathbb{Q} is dense in \mathbb{R}.
(2) \mathbb{Q}^{n} is dense in \mathbb{R}^{n}.
(3) Weierstrass approximation theorem: polynomials are dense in continuous functions (with the supremum norm, on compact domains).

Separability

- X is separable if it has a countable dense subset.

Separability

- X is separable if it has a countable dense subset.
- Examples:
(1) \mathbb{R} is separable.
(2) \mathbb{R}^{n} is separable.
(3) $\ell_{2}, \mathrm{~L}_{2}([0,1])$ are separable.

Orthonormal Basis

- A Hilbert space has a countable orthonormal basis if and only if it is separable.
- Can write:

$$
\mathrm{f}=\sum_{i=1}^{\infty}\left\langle\mathrm{f}, \phi_{i}\right\rangle \phi_{\mathrm{i}} \text { for all } \mathrm{f} \in \mathcal{H}
$$

- Examples:
(1) Basis of ℓ_{2} is $(1,0, \ldots),,(0,1,0, \ldots),(0,0,1,0, \ldots), \ldots$
(2) Basis of $\mathrm{L}_{2}([0,1])$ is $1,2 \sin 2 \pi n x, 2 \cos 2 \pi n x$ for $n \in \mathbb{N}$

(1) Vector Spaces

(2) Hilbert Spaces

(3) Functionals and Operators (Matrices)

4 Linear Operators

Maps

Next we are going to review basic properties of maps on a Hilbert space.

- functionals: $\Psi: \mathcal{H} \rightarrow \mathbb{R}$
- linear operators $A: \mathcal{H} \rightarrow \mathcal{H}$, such that $A(a f+b g)=a A f+b A g$, with $a, b \in \mathbb{R}$ and $f, g \in \mathcal{H}$.

Representation of Continuous Functionals

Let \mathcal{H} be a Hilbert space and $g \in \mathcal{H}$, then

$$
\Psi_{\mathrm{g}}(\mathrm{f})=\langle\mathrm{f}, \mathrm{~g}\rangle, \quad \mathrm{f} \in \mathcal{H}
$$

is a continuous linear functional.

Riesz representation theorem

The theorem states that every continuous linear functional Ψ can be written uniquely in the form,

$$
\Psi(f)=\langle f, g\rangle
$$

for some appropriate element $\mathrm{g} \in \mathcal{H}$.

Matrix

- Every linear operator $L: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ can be represented by an $m \times n$ matrix A.

Matrix

- Every linear operator $L: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ can be represented by an $m \times n$ matrix A.
- If $A \in \mathbb{R}^{m \times n}$, the transpose of A is $A^{\top} \in \mathbb{R}^{n \times m}$ satisfying

$$
\langle A x, y\rangle_{\mathbb{R}^{m}}=(A x)^{\top} y=x^{\top} A^{\top} y=\left\langle x, A^{\top} y\right\rangle_{\mathbb{R}^{n}}
$$

for every $x \in \mathbb{R}^{n}$ and $y \in \mathbb{R}^{m}$.

Matrix

- Every linear operator $L: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ can be represented by an $m \times n$ matrix A.
- If $A \in \mathbb{R}^{m \times n}$, the transpose of A is $A^{\top} \in \mathbb{R}^{n \times m}$ satisfying

$$
\langle A x, y\rangle_{\mathbb{R}^{m}}=(A x)^{\top} y=x^{\top} A^{\top} y=\left\langle x, A^{\top} y\right\rangle_{\mathbb{R}^{n}}
$$

for every $x \in \mathbb{R}^{n}$ and $y \in \mathbb{R}^{m}$.

- A is symmetric if $A^{\top}=A$.

Eigenvalues and Eigenvectors

- Let $A \in \mathbb{R}^{n \times n}$. A nonzero vector $v \in \mathbb{R}^{n}$ is an eigenvector of A with corresponding eigenvalue $\lambda \in \mathbb{R}$ if $A \nu=\lambda \nu$.

Eigenvalues and Eigenvectors

- Let $A \in \mathbb{R}^{n \times n}$. A nonzero vector $v \in \mathbb{R}^{n}$ is an eigenvector of A with corresponding eigenvalue $\lambda \in \mathbb{R}$ if $A \nu=\lambda \nu$.
- Symmetric matrices have real eigenvalues.

Eigenvalues and Eigenvectors

- Let $A \in \mathbb{R}^{n \times n}$. A nonzero vector $v \in \mathbb{R}^{n}$ is an eigenvector of A with corresponding eigenvalue $\lambda \in \mathbb{R}$ if $A \nu=\lambda \nu$.
- Symmetric matrices have real eigenvalues.
- Spectral Theorem: Let A be a symmetric $n \times n$ matrix. Then there is an orthonormal basis of \mathbb{R}^{n} consisting of the eigenvectors of A.

Eigenvalues and Eigenvectors

- Let $A \in \mathbb{R}^{n \times n}$. A nonzero vector $v \in \mathbb{R}^{n}$ is an eigenvector of A with corresponding eigenvalue $\lambda \in \mathbb{R}$ if $A \nu=\lambda \nu$.
- Symmetric matrices have real eigenvalues.
- Spectral Theorem: Let \mathcal{A} be a symmetric $\mathfrak{n} \times n$ matrix. Then there is an orthonormal basis of \mathbb{R}^{n} consisting of the eigenvectors of A.
- Eigendecomposition: $\mathrm{A}=\mathrm{V} \wedge \mathrm{V}^{\top}$, or equivalently,

$$
A=\sum_{i=1}^{n} \lambda_{i} v_{i} v_{i}^{\top}
$$

Singular Value Decomposition

- Every $A \in \mathbb{R}^{m \times n}$ can be written as

$$
A=U \Sigma V^{\top}
$$

where $\mathrm{U} \in \mathbb{R}^{\mathfrak{m} \times \mathfrak{m}}$ is orthogonal, $\Sigma \in \mathbb{R}^{\mathfrak{m} \times n}$ is diagonal, and $\mathrm{V} \in \mathbb{R}^{\mathrm{n} \times n}$ is orthogonal.

Singular Value Decomposition

- Every $A \in \mathbb{R}^{m \times n}$ can be written as

$$
A=U \Sigma V^{\top}
$$

where $\mathrm{U} \in \mathbb{R}^{\mathfrak{m} \times \mathfrak{m}}$ is orthogonal, $\Sigma \in \mathbb{R}^{\mathfrak{m} \times \mathfrak{n}}$ is diagonal, and $\mathrm{V} \in \mathbb{R}^{\mathrm{n} \times n}$ is orthogonal.

- Singular system:

$$
\begin{array}{rlrl}
A v_{i} & =\sigma_{i} u_{i} & A A^{\top} u_{i} & =\sigma_{i}^{2} u_{i} \\
A^{\top} u_{i} & =\sigma_{i} v_{i} & A^{\top} A v_{i} & =\sigma_{i}^{2} v_{i}
\end{array}
$$

Matrix Norm

- The spectral norm of $A \in \mathbb{R}^{m \times n}$ is

$$
\|A\|_{\text {spec }}=\sigma_{\max }(A)=\sqrt{\lambda_{\max }\left(A A^{\top}\right)}=\sqrt{\lambda_{\max }\left(A^{\top} A\right)} .
$$

Matrix Norm

- The spectral norm of $A \in \mathbb{R}^{m \times n}$ is

$$
\|A\|_{\text {spec }}=\sigma_{\max }(A)=\sqrt{\lambda_{\max }\left(A A^{\top}\right)}=\sqrt{\lambda_{\max }\left(A^{\top} A\right)}
$$

- The Frobenius norm of $A \in \mathbb{R}^{m \times n}$ is

$$
\|\mathcal{A}\|_{F}=\sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i j}^{2}}=\sqrt{\sum_{i=1}^{\min \{m, n\}} \sigma_{i}^{2} .}
$$

Positive Definite Matrix

A real symmetric matrix $A \in \mathbb{R}^{\mathfrak{m} \times \mathfrak{m}}$ is positive definite if

$$
x^{\mathrm{t}} A x>0, \quad \forall x \in \mathbb{R}^{m}
$$

A positive definite matrix has positive eigenvalues.

Note: for positive semi-definite matrices $>$ is replaced by \geqslant.

(1) Vector Spaces

(2) Hilbert Spaces

(3) Functionals and Operators (Matrices)

4 Linear Operators

Linear Operator

- An operator L: $\mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$ is linear if it preserves the linear structure.

Linear Operator

- An operator $\mathrm{L}: \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$ is linear if it preserves the linear structure.
- A linear operator L: $\mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$ is bounded if there exists C >0 such that

$$
\|\mathrm{Lf}\|_{\mathcal{H}_{2}} \leqslant \mathrm{C}\|\mathrm{f}\|_{\mathcal{H}_{1}} \text { for all } \mathrm{f} \in \mathcal{H}_{1} .
$$

Linear Operator

- An operator $\mathrm{L}: \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$ is linear if it preserves the linear structure.
- A linear operator L: $\mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$ is bounded if there exists C >0 such that

$$
\|\mathrm{Lf}\|_{\mathcal{H}_{2}} \leqslant \mathrm{C}\|f\|_{\mathcal{H}_{1}} \text { for all } \mathrm{f} \in \mathcal{H}_{1} .
$$

- A linear operator is continuous if and only if it is bounded.

Adjoint and Compactness

- The adjoint of a bounded linear operator $\mathrm{L}: \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$ is a bounded linear operator $L^{*}: \mathcal{H}_{2} \rightarrow \mathcal{H}_{1}$ satisfying

$$
\langle\mathrm{Lf}, \mathrm{~g}\rangle_{\mathcal{H}_{2}}=\left\langle\mathrm{f}, \mathrm{~L}^{*} \mathrm{~g}\right\rangle_{\mathcal{H}_{1}} \text { for all } \mathrm{f} \in \mathcal{H}_{1}, \mathrm{~g} \in \mathcal{H}_{2} .
$$

- L is self-adjoint if $L^{*}=$ L. Self-adjoint operators have real eigenvalues.

Adjoint and Compactness

- The adjoint of a bounded linear operator $\mathrm{L}: \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$ is a bounded linear operator $L^{*}: \mathcal{H}_{2} \rightarrow \mathcal{H}_{1}$ satisfying

$$
\langle\mathrm{Lf}, \mathrm{~g}\rangle_{\mathcal{H}_{2}}=\left\langle\mathrm{f}, \mathrm{~L}^{*} \mathrm{~g}\right\rangle_{\mathcal{H}_{1}} \text { for all } \mathrm{f} \in \mathcal{H}_{1}, \mathrm{~g} \in \mathcal{H}_{2} .
$$

- L is self-adjoint if $\mathrm{L}^{*}=\mathrm{L}$. Self-adjoint operators have real eigenvalues.
- A bounded linear operator $\mathrm{L}: \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$ is compact if the image of the unit ball in \mathcal{H}_{1} has compact closure in \mathcal{H}_{2}.

Spectral Theorem for Compact Self-Adjoint Operator

- Let $\mathrm{L}: \mathcal{H} \rightarrow \mathcal{H}$ be a compact self-adjoint operator. Then there exists an orthonormal basis of \mathcal{H} consisting of the eigenfunctions of L,

$$
\mathrm{L} \phi_{\mathrm{i}}=\lambda_{i} \phi_{i}
$$

and the only possible limit point of λ_{i} as $i \rightarrow \infty$ is 0 .

Spectral Theorem for Compact Self-Adjoint Operator

- Let $\mathrm{L}: \mathcal{H} \rightarrow \mathcal{H}$ be a compact self-adjoint operator. Then there exists an orthonormal basis of \mathcal{H} consisting of the eigenfunctions of L,

$$
\mathrm{L} \phi_{i}=\lambda_{i} \phi_{i}
$$

and the only possible limit point of λ_{i} as $i \rightarrow \infty$ is 0 .

- Eigendecomposition:

$$
\mathrm{L}=\sum_{i=1}^{\infty} \lambda_{i}\left\langle\phi_{i}, \cdot\right\rangle \phi_{i}
$$

Fourier Transform

- Integral transform from time to frequency domain,

$$
\hat{f}(\omega)=\int \exp ^{-2 \pi i \omega t} f(t) d t
$$

- Invertible on $L^{1}\left(\mathbb{R}^{n}\right)$, with inverse transform

$$
f(t)=\int \exp ^{2 \pi i \omega t} \hat{f}(\omega) d \omega
$$

Fourier Transform

- Examples:

$$
\begin{aligned}
\int \exp ^{-2 \pi i \omega t} f(t) d t & =\hat{f}(\omega) \\
\int \exp ^{-2 \pi i \omega t} f^{\prime}(t) d t & =(2 \pi i \omega) \hat{f}(\omega) \\
\int \exp ^{-2 \pi i \omega t} f(t-a) d t & =\exp ^{-2 \pi i a \omega} \hat{f}(\omega) \\
\int \exp ^{-2 \pi i \omega t} \exp ^{-\sigma t^{2}} d t & =\sqrt{\frac{\pi}{\sigma}} \exp ^{-\frac{(\pi \omega)^{2}}{\sigma}}
\end{aligned}
$$

