Functional Analysis Review

Lorenzo Rosasco
—slides courtesy of Andre Wibisono

9.520: Statistical Learning Theory and Applications

September 9, 2013

- 1 Vector Spaces
- 2 Hilbert Spaces
- 3 Functionals and Operators (Matrices)
- 4 Linear Operators

Vector Space

• A vector space is a set V with binary operations

$$+: V \times V \to V \quad \text{and} \quad \cdot: \mathbb{R} \times V \to V$$

such that for all $a, b \in \mathbb{R}$ and $v, w, x \in V$:

- **1** v + w = w + v
- (v + w) + x = v + (w + x)
- **3** There exists $0 \in V$ such that v + 0 = v for all $v \in V$
- For every $v \in V$ there exists $-v \in V$ such that v + (-v) = 0
- 1v = v
- (a+b)v = av + bv

Vector Space

• A **vector space** is a set V with binary operations

$$+: V \times V \to V \quad \text{and} \quad \cdot: \mathbb{R} \times V \to V$$

such that for all $a, b \in \mathbb{R}$ and $v, w, x \in V$:

- **1** v + w = w + v
- (v + w) + x = v + (w + x)
- **3** There exists $0 \in V$ such that v + 0 = v for all $v \in V$
- **①** For every $v \in V$ there exists $-v \in V$ such that v + (-v) = 0
- 1 v = v
- a(v+w) = av + aw
- Example: \mathbb{R}^n , space of polynomials, space of functions.

Basis

• $B = \{\nu_1, \dots, \nu_n\}$ is a **basis** of V if every $\nu \in V$ can be uniquely decomposed as

$$v = a_1v_1 + \cdots + a_nv_n$$

for some $a_1, \ldots, a_n \in \mathbb{R}$.

Basis

• $B = \{\nu_1, \dots, \nu_n\}$ is a **basis** of V if every $\nu \in V$ can be uniquely decomposed as

$$\nu = \alpha_1 \nu_1 + \dots + \alpha_n \nu_n$$

for some $a_1, \ldots, a_n \in \mathbb{R}$.

• An orthonormal basis is a basis that is orthogonal $(\langle v_i, v_j \rangle = 0 \text{ for } i \neq j)$ and normalized $(\|v_i\| = 1)$.

Norm

• Can define norm from inner product: $\|\mathbf{v}\| = \langle \mathbf{v}, \mathbf{v} \rangle^{1/2}$.

Norm

- A **norm** is a function $\|\cdot\|: V \to \mathbb{R}$ such that for all $\mathfrak{a} \in \mathbb{R}$ and $v, w \in V$:

 - **2** $\|av\| = |a| \|v\|$
 - **3** $\|v + w\| \le \|v\| + \|w\|$
- Can define norm from inner product: $\|\nu\| = \langle \nu, \nu \rangle^{1/2}$.

Metric

• Can define metric from norm: d(v, w) = ||v - w||.

Metric

- A **metric** is a function $d: V \times V \to \mathbb{R}$ such that for all $v, w, x \in V$:
 - $\mathbf{0}$ $d(v, w) \ge 0$, and d(v, w) = 0 if and only if v = w
 - d(v, w) = d(w, v)
- Can define metric from norm: d(v, w) = ||v w||.

• An inner product is a function $\langle \cdot, \cdot \rangle \colon V \times V \to \mathbb{R}$ such that for all $\mathfrak{a}, \mathfrak{b} \in \mathbb{R}$ and $\mathfrak{v}, \mathfrak{w}, \mathfrak{x} \in V$:

- An inner product is a function $\langle \cdot, \cdot \rangle \colon V \times V \to \mathbb{R}$ such that for all $a, b \in \mathbb{R}$ and $v, w, x \in V$:

- An **inner product** is a function $\langle \cdot, \cdot \rangle \colon V \times V \to \mathbb{R}$ such that for all $a, b \in \mathbb{R}$ and $v, w, x \in V$:

 - $\langle v, v \rangle \geqslant 0$ and $\langle v, v \rangle = 0$ if and only if v = 0.
- $v, w \in V$ are orthogonal if $\langle v, w \rangle = 0$.

- An **inner product** is a function $\langle \cdot, \cdot \rangle \colon V \times V \to \mathbb{R}$ such that for all $a, b \in \mathbb{R}$ and $v, w, x \in V$:

 - $\langle \mathbf{v}, \mathbf{v} \rangle \geqslant 0$ and $\langle \mathbf{v}, \mathbf{v} \rangle = 0$ if and only if $\mathbf{v} = 0$.
- $v, w \in V$ are orthogonal if $\langle v, w \rangle = 0$.
- Given $W \subseteq V$, we have $V = W \oplus W^{\perp}$, where $W^{\perp} = \{ v \in V \mid \langle v, w \rangle = 0 \text{ for all } w \in W \}.$

- An **inner product** is a function $\langle \cdot, \cdot \rangle \colon V \times V \to \mathbb{R}$ such that for all $a, b \in \mathbb{R}$ and $v, w, x \in V$:

 - $\langle \mathbf{v}, \mathbf{v} \rangle \geqslant 0$ and $\langle \mathbf{v}, \mathbf{v} \rangle = 0$ if and only if $\mathbf{v} = 0$.
- $v, w \in V$ are orthogonal if $\langle v, w \rangle = 0$.
- Given $W \subseteq V$, we have $V = W \oplus W^{\perp}$, where $W^{\perp} = \{ v \in V \mid \langle v, w \rangle = 0 \text{ for all } w \in W \}.$
- Cauchy-Schwarz inequality: $\langle v, w \rangle \leq \langle v, v \rangle^{1/2} \langle w, w \rangle^{1/2}$.

- 1 Vector Spaces
- 2 Hilbert Spaces
- 3 Functionals and Operators (Matrices)
- 4 Linear Operators

Hilbert Space, overview

 Goal: to understand Hilbert spaces (complete inner product spaces) and to make sense of the expression

$$f = \sum_{i=1}^{\infty} \langle f, \varphi_i \rangle \varphi_i, \ f \in \mathcal{H}$$

- Need to talk about:
 - Cauchy sequence
 - 2 Completeness
 - Oensity
 - Separability

Hilbert Space

• A **Hilbert space** is a complete inner product space.

Completeness

• A normed vector space V is **complete** if every Cauchy sequence converges.

Cauchy Sequence

• Recall: $\lim_{n\to\infty} x_n = x$ if for every $\epsilon > 0$ there exists $N \in \mathbb{N}$ such that $||x - x_n|| < \epsilon$ whenever $n \ge \mathbb{N}$.

Cauchy Sequence

- Recall: $\lim_{n\to\infty} x_n = x$ if for every $\epsilon > 0$ there exists $N \in \mathbb{N}$ such that $||x x_n|| < \epsilon$ whenever $n \ge \mathbb{N}$.
- $(x_n)_{n\in\mathbb{N}}$ is a **Cauchy sequence** if for every $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that $||x_m x_n|| < \varepsilon$ whenever $m, n \ge N$.

Cauchy Sequence

- Recall: $\lim_{n\to\infty} x_n = x$ if for every $\epsilon > 0$ there exists $N \in \mathbb{N}$ such that $||x x_n|| < \epsilon$ whenever $n \ge \mathbb{N}$.
- $(x_n)_{n\in\mathbb{N}}$ is a **Cauchy sequence** if for every $\epsilon > 0$ there exists $N \in \mathbb{N}$ such that $||x_m x_n|| < \epsilon$ whenever $m, n \ge N$.
- Every convergent sequence is a Cauchy sequence (why?)

Completeness

- A normed vector space V is **complete** if every Cauchy sequence converges.
- Examples:
 - Q is not complete.

 - $\ \, \bullet \ \,$ Every finite dimensional normed vector space (over $\mathbb R)$ is complete.

Hilbert Space

- A **Hilbert space** is a complete inner product space.
- Examples:
 - \bullet \mathbb{R}^n
 - 2 Every finite dimensional inner product space.

3
$$\ell_2 = \{(a_n)_{n=1}^{\infty} \mid a_n \in \mathbb{R}, \sum_{n=1}^{\infty} a_n^2 < \infty\}$$

1
$$L_2([0,1]) = \{f: [0,1] \to \mathbb{R} \mid \int_0^1 f(x)^2 dx < \infty \}$$

Orthonormal Basis

- A Hilbert space has a countable orthonormal basis if and only if it is separable.
- Can write:

$$f = \sum_{i=1}^{\infty} \langle f, \varphi_i \rangle \varphi_i \ \mathrm{for \ all} \ f \in \mathcal{H}.$$

Density

• Y is dense in X if $\overline{Y} = X$.

Density

- Y is **dense** in X if $\overline{Y} = X$.
- Examples:
 - \bigcirc \mathbb{Q} is dense in \mathbb{R} .
 - \mathbb{Q}^n is dense in \mathbb{R}^n .
 - Weierstrass approximation theorem: polynomials are dense in continuous functions (with the supremum norm, on compact domains).

Separability

• X is **separable** if it has a countable dense subset.

Separability

- X is **separable** if it has a countable dense subset.
- Examples:
 - \bullet \blacksquare is separable.

 - \mathfrak{d} ℓ_2 , $L_2([0,1])$ are separable.

Orthonormal Basis

- A Hilbert space has a countable orthonormal basis if and only if it is separable.
- Can write:

$$f = \sum_{i=1}^{\infty} \langle f, \varphi_i \rangle \varphi_i \ \mathrm{for \ all} \ f \in \mathcal{H}.$$

- Examples:
 - **1** Basis of ℓ_2 is $(1,0,\ldots)$, $(0,1,0,\ldots)$, $(0,0,1,0,\ldots)$,...
 - ② Basis of $L_2([0,1])$ is $1, 2\sin 2\pi nx, 2\cos 2\pi nx$ for $n \in \mathbb{N}$

- Vector Spaces
- 2 Hilbert Spaces
- 3 Functionals and Operators (Matrices)
- 4 Linear Operators

Maps

Next we are going to review basic properties of maps on a Hilbert space.

- functionals: $\Psi: \mathcal{H} \to \mathbb{R}$
- linear operators $A: \mathcal{H} \to \mathcal{H}$, such that $A(\mathfrak{af} + \mathfrak{bg}) = \mathfrak{a}A\mathfrak{f} + \mathfrak{b}A\mathfrak{g}$, with $\mathfrak{a}, \mathfrak{b} \in \mathbb{R}$ and $\mathfrak{f}, \mathfrak{g} \in \mathcal{H}$.

Representation of Continuous Functionals

Let \mathcal{H} be a Hilbert space and $g \in \mathcal{H}$, then

$$\Psi_{\mathbf{g}}(\mathbf{f}) = \langle \mathbf{f}, \mathbf{g} \rangle, \qquad \mathbf{f} \in \mathcal{H}$$

is a continuous linear functional.

Riesz representation theorem

The theorem states that every continuous linear functional Ψ can be written uniquely in the form,

$$\Psi(f) = \langle f, g \rangle$$

for some appropriate element $g \in \mathcal{H}$.

Matrix

• Every linear operator L: $\mathbb{R}^m \to \mathbb{R}^n$ can be represented by an $m \times n$ matrix A.

Matrix

- Every linear operator L: $\mathbb{R}^m \to \mathbb{R}^n$ can be represented by an $m \times n$ matrix A.
- \bullet If $A \in \mathbb{R}^{m \times n},$ the transpose of A is $A^\top \in \mathbb{R}^{n \times m}$ satisfying

$$\langle Ax,y\rangle_{\mathbb{R}^m} = (Ax)^\top y = x^\top A^\top y = \langle x,A^\top y\rangle_{\mathbb{R}^n}$$
 for every $x\in\mathbb{R}^n$ and $y\in\mathbb{R}^m$.

Matrix

- Every linear operator L: $\mathbb{R}^m \to \mathbb{R}^n$ can be represented by an $m \times n$ matrix A.
- If $A \in \mathbb{R}^{m \times n}$, the transpose of A is $A^{\top} \in \mathbb{R}^{n \times m}$ satisfying $\langle Ax, y \rangle_{\mathbb{R}^m} = (Ax)^{\top}y = x^{\top}A^{\top}y = \langle x, A^{\top}y \rangle_{\mathbb{R}^n}$ for every $x \in \mathbb{R}^n$ and $y \in \mathbb{R}^m$.
- A is symmetric if $A^{\top} = A$.

• Let $A \in \mathbb{R}^{n \times n}$. A nonzero vector $v \in \mathbb{R}^n$ is an eigenvector of A with corresponding eigenvalue $\lambda \in \mathbb{R}$ if $Av = \lambda v$.

- Let $A \in \mathbb{R}^{n \times n}$. A nonzero vector $v \in \mathbb{R}^n$ is an eigenvector of A with corresponding eigenvalue $\lambda \in \mathbb{R}$ if $Av = \lambda v$.
- Symmetric matrices have real eigenvalues.

- Let $A \in \mathbb{R}^{n \times n}$. A nonzero vector $v \in \mathbb{R}^n$ is an eigenvector of A with corresponding eigenvalue $\lambda \in \mathbb{R}$ if $Av = \lambda v$.
- Symmetric matrices have real eigenvalues.
- Spectral Theorem: Let A be a symmetric $n \times n$ matrix. Then there is an orthonormal basis of \mathbb{R}^n consisting of the eigenvectors of A.

- Let $A \in \mathbb{R}^{n \times n}$. A nonzero vector $v \in \mathbb{R}^n$ is an eigenvector of A with corresponding eigenvalue $\lambda \in \mathbb{R}$ if $Av = \lambda v$.
- Symmetric matrices have real eigenvalues.
- Spectral Theorem: Let A be a symmetric $n \times n$ matrix. Then there is an orthonormal basis of \mathbb{R}^n consisting of the eigenvectors of A.
- Eigendecomposition: $A = V\Lambda V^{\top}$, or equivalently,

$$A = \sum_{i=1}^{n} \lambda_i \nu_i \nu_i^{\top}.$$

Singular Value Decomposition

• Every $A \in \mathbb{R}^{m \times n}$ can be written as

$$A = U\Sigma V^{\top}$$
,

where $U \in \mathbb{R}^{m \times m}$ is orthogonal, $\Sigma \in \mathbb{R}^{m \times n}$ is diagonal, and $V \in \mathbb{R}^{n \times n}$ is orthogonal.

Singular Value Decomposition

• Every $A \in \mathbb{R}^{m \times n}$ can be written as

$$A = U\Sigma V^{\top}$$

where $U \in \mathbb{R}^{m \times m}$ is orthogonal, $\Sigma \in \mathbb{R}^{m \times n}$ is diagonal, and $V \in \mathbb{R}^{n \times n}$ is orthogonal.

• Singular system:

$$\begin{aligned} A\nu_i &= \sigma_i u_i & AA^\top u_i &= \sigma_i^2 u_i \\ A^\top u_i &= \sigma_i \nu_i & A^\top A\nu_i &= \sigma_i^2 \nu_i \end{aligned}$$

Matrix Norm

• The spectral norm of $A \in \mathbb{R}^{m \times n}$ is

$$\|A\|_{\mathrm{spec}} = \sigma_{\mathrm{max}}(A) = \sqrt{\lambda_{\mathrm{max}}(AA^\top)} = \sqrt{\lambda_{\mathrm{max}}(A^\top A)}.$$

Matrix Norm

• The spectral norm of $A \in \mathbb{R}^{m \times n}$ is

$$\|A\|_{\mathrm{spec}} = \sigma_{\mathrm{max}}(A) = \sqrt{\lambda_{\mathrm{max}}(AA^\top)} = \sqrt{\lambda_{\mathrm{max}}(A^\top A)}.$$

• The Frobenius norm of $A \in \mathbb{R}^{m \times n}$ is

$$\|A\|_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n \alpha_{ij}^2} = \sqrt{\sum_{i=1}^{\min\{m,n\}} \sigma_i^2}.$$

Positive Definite Matrix

A real symmetric matrix $A \in \mathbb{R}^{m \times m}$ is positive definite if

$$x^t Ax > 0, \quad \forall x \in \mathbb{R}^m.$$

A positive definite matrix has positive eigenvalues.

Note: for positive semi-definite matrices > is replaced by \ge .

- 1 Vector Spaces
- 2 Hilbert Spaces
- 3 Functionals and Operators (Matrices)
- 4 Linear Operators

Linear Operator

• An operator L: $\mathcal{H}_1 \to \mathcal{H}_2$ is linear if it preserves the linear structure.

Linear Operator

- An operator L: $\mathcal{H}_1 \to \mathcal{H}_2$ is linear if it preserves the linear structure.
- A linear operator L: $\mathcal{H}_1 \to \mathcal{H}_2$ is bounded if there exists C > 0 such that

$$\|Lf\|_{\mathcal{H}_2}\leqslant C\|f\|_{\mathcal{H}_1}\ \ \mathrm{for\ all}\ f\in\mathcal{H}_1.$$

Linear Operator

- An operator L: $\mathcal{H}_1 \to \mathcal{H}_2$ is linear if it preserves the linear structure.
- A linear operator L: $\mathcal{H}_1 \to \mathcal{H}_2$ is bounded if there exists C > 0 such that

$$\|Lf\|_{\mathcal{H}_2}\leqslant C\|f\|_{\mathcal{H}_1}\ \, \mathrm{for\ \, all}\ \, f\in\mathcal{H}_1.$$

• A linear operator is continuous if and only if it is bounded.

Adjoint and Compactness

• The adjoint of a bounded linear operator $L: \mathcal{H}_1 \to \mathcal{H}_2$ is a bounded linear operator $L^*: \mathcal{H}_2 \to \mathcal{H}_1$ satisfying

$$\langle Lf,g\rangle_{\mathcal{H}_2}=\langle f,L^*g\rangle_{\mathcal{H}_1}\ \ \mathrm{for\ all}\ f\in\mathcal{H}_1,g\in\mathcal{H}_2.$$

• L is self-adjoint if $L^* = L$. Self-adjoint operators have real eigenvalues.

Adjoint and Compactness

• The adjoint of a bounded linear operator $L: \mathcal{H}_1 \to \mathcal{H}_2$ is a bounded linear operator $L^*: \mathcal{H}_2 \to \mathcal{H}_1$ satisfying

$$\langle Lf,g\rangle_{\mathcal{H}_2}=\langle f,L^*g\rangle_{\mathcal{H}_1}\ \ \mathrm{for\ all}\ \ f\in\mathcal{H}_1,g\in\mathcal{H}_2.$$

- L is self-adjoint if $L^* = L$. Self-adjoint operators have real eigenvalues.
- A bounded linear operator L: H₁ → H₂ is compact if the image of the unit ball in H₁ has compact closure in H₂.

Spectral Theorem for Compact Self-Adjoint Operator

• Let $L: \mathcal{H} \to \mathcal{H}$ be a compact self-adjoint operator. Then there exists an orthonormal basis of \mathcal{H} consisting of the eigenfunctions of L,

$$L\varphi_{\mathfrak{i}}=\lambda_{\mathfrak{i}}\varphi_{\mathfrak{i}}$$

and the only possible limit point of λ_i as $i \to \infty$ is 0.

Spectral Theorem for Compact Self-Adjoint Operator

• Let $L: \mathcal{H} \to \mathcal{H}$ be a compact self-adjoint operator. Then there exists an orthonormal basis of \mathcal{H} consisting of the eigenfunctions of L,

$$L\varphi_{\mathfrak{i}}=\lambda_{\mathfrak{i}}\varphi_{\mathfrak{i}}$$

and the only possible limit point of λ_i as $i \to \infty$ is 0.

• Eigendecomposition:

$$L = \sum_{i=1}^{\infty} \lambda_i \langle \varphi_i, \cdot \rangle \varphi_i.$$

Fourier Transform

• Integral transform from time to frequency domain,

$$\hat{f}(\omega) = \int exp^{-2\pi i\omega t} f(t) dt.$$

• Invertible on $L^1(\mathbb{R}^n)$, with inverse transform

$$f(t) = \int \exp^{2\pi i \omega t} \hat{f}(\omega) d\omega.$$

Fourier Transform

• Examples:

$$\int \exp^{-2\pi i\omega t} f(t) dt = \hat{f}(\omega)$$

$$\int \exp^{-2\pi i\omega t} f'(t) dt = (2\pi i\omega) \hat{f}(\omega)$$

$$\int \exp^{-2\pi i\omega t} f(t-a) dt = \exp^{-2\pi ia\omega} \hat{f}(\omega)$$

$$\int \exp^{-2\pi i\omega t} \exp^{-\sigma t^2} dt = \sqrt{\frac{\pi}{\sigma}} \exp^{-\frac{(\pi\omega)^2}{\sigma}}$$