IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 3, MAY 2000 737

Grammar-Based Codes: A New Class of Universal
Lossless Source Codes

John C. Kieffer Fellow, IEEE,and En-hui YangMember, IEEE

Abstract—We investigate a type of lossless source code called a
grammar-based code, which, in response to any input data string
@ over a fixed finite alphabet, selects a context-free grammaé,, transform encoder
representing & in the sense thate is the unique string belonging
to the language generated by+,,.. Lossless compression at takes
place indirectly via compression of the production rules of the
grammar G,. It is shown that, subject to some mild restrictions,

a grammar-based code is a universal code with respect to the gh | 5yt forth a class of lossless source codes that employ this
family of finite-state information sources over the finite alphabet.

Redundancy bounds for grammar-based codes are established.appro‘ijCh that we cajrammar-based code&nlike previous

Reduction rules for designing grammar-based codes are pre- Workers using the second approach, we place our results in an
sented. information-theoretic perspective, showing how to properly

Index Terms_chomsky hierarchy’ context-free grammars, en- design a grammar'based COde SO that |t W|” be a Universal COde
tropy, Kolmogorov complexity, lossless coding, redundancy, uni- with respect to the family of finite-state information sources on
versal coding. a fixed finite alphabet.

In this section, we wish to give the reader an informal notion
of the idea of a grammar-based code. For this purpose, we do not
need a precise definition of the concept of context-free grammar
G RAMMARS (especially context-free grammars) havginis will be done in Section If). All we need to know about a

many appllcat!ons_, in engineering and computer scienG&ntext-free gramma here is that it furnishes us with some
Some of these applications are speech recognition [8, Ch. Igloduction rules via which we can construct certain sequences
image understanding [22, p. 289], compiler design [1], anger a finite alphabet which form what is called tamguage
language modeling [10, Theorems 4.5, 4.6]. In this paper, W@nerated by, denoted byL(G).

shall be interested in using context-free grammars for losslesy\ grammar-based code consists of encoder and decoder.
data compression. There has been some previous work of

this nature, including the papers [3], [2], [11], [14], [24],[18]. * Fig. 1 dgpicts the encoder structure. Lettmggnote t_hg
Two approaches have been used. In one of these approaches data string that is to be compress_ed, consisting of finitely
(as illustrated in [2], [11], and [14]), one fixes a context-free ~ Many terms chosen from some fixed finite alphabet, the
grammar@, known to both encoder and decoder, such that the ~grammar transformin Fig. 1 constructs a context-free
language generated Iy contains all of the data strings that ~ grammarG,, satisfying the property thal(G.) = {z},

are to be compressed. To compress a particular data string, one Which tells us that: may be inferred front, because
then compresses the derivation tree [2, p. 844] showing how the & iS the unique stnng_belqngmg to the language?s).
given string is derived from the start symbol of the grami@ar The grammar encodem Fig. 1 assigns to the grammar
In the second of the two approaches (exemplified by the papers G= @ binary codeword which is denoté#{ Gz).

[3], [24], and [18]), a different context-free grammél, is * When the decoder is presented with the codewst,,),
assigned to each data stringso that the language generated by the data stringe is recovered by first reconstructing the
G, is {2}. If the data stringe is to be compressed, the encoder grammarG,,, and then inferringe from the production
transmits code bits to the decoder that allow reconstruction of rules of G,.

the grammarZ,, from which the decoder infets This second
approach is the approach that we employ in this paper.

X — | grammar |— Gx — | grammar |— B(Gx)

Fig. 1. Encoder structure of grammar-based code.

. INTRODUCTION

\ﬁrom the preceding, the reader can see that our philosophy is
e .] “

not to directly compress the data stringnstead, we try to “ex-
plain” z by finding a grammar7,, that is simple and generates

Manuscript received December 20, 1995; revised December 16, 1999. TRiSn the sense thaL(Gm) = {z}. Sincez can be recovered
work was supported in part by the National Science Foundation under Grapts N
NCR-9304984, NCR-9508282, NCR-9627965, and by the Natural Sciences 4fdM Gz, We can compres§, instead ofr. As the grammar
Engineering Research Council of Canada under Grant RGPIN203035-98. (7, that we shall use to represenwill be simple, we will get

J. C. Kieffer is with the Department of Electrical and Computer Engigood compression by compressi@g.

neering, University of Minnesota, Minneapolis, MN 55455 USA (e-mail: . .
kieﬁer?@ece.umn.gdu). P (The main results of this paper (Theorems 7 and 8) tell us

E.-h. Yang is with the Department of Electrical and Computer Engthat, under some weak restrictions, a grammar-based code is a
neering, University of Waterloo, Waterloo, Ont., Canada N2L 3G1 (e-majjnjversal lossless source code for any finite-state information
ehyang@bbcr.uwaterloo.ca). . o

Communicated by M. Weinberger, Associate Editor for Source Coding. source. We shall be able to obtain specific redundancy bounds

Publisher Item Identifier S 0018-9448(00)03094-7. for grammar-based codes with respect to finite-state information

0018-9448/00$10.00 © 2000 IEEE

738 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 3, MAY 2000

sources. Also, we shall see how to design efficient grammar-A production ruleis an expression of the form
based codes by means of reduction rules.

As a result of this paper, the code designer is afforded with A—a (2.2)
more flexibility in universal lossless source code design. For . -
example, for some data strings, a properly designed gramm p_ereA_ehS andabe S ffo;somedflnlt_e seS.I Th; I2eft_ mder?_be(rj
based code yields better compression performance than tha I§sp., right mem er) of the production rule (2.2) is defined to

forded by the Lempel—Ziv universal data compression algorith A (resp.,a). Following [10], acontext-free grammais a

[27] quadrupleG = (V, T, P, S) in which

Notation and TerminologyWe explain the following nota- » V' is a finite nonempty set whose elements shall be called
tions and terminologies used throughout the paper: variables

« |S| denotes the cardinality of a finite s&t » T is a finite nonempty set, disjoint frotr, whose ele-

ments shall be callettrminal symbols

P is a finite set of production rules whose left members
come fromV and whose right members come frgi#i U
T)*. We assume that for eache V, there is at least one
production rule inP whose left member igl.

» Sis a special variable ifr’ called thestart symbal

* |z| denotes the length of a stringof finite length.

* [z] denotes the smallest positive integer greater than or *
equal to the real number.

» §* denotes the set of all strings of finite length whose en-
tries come from the finite s&t, including the empty string.
We represent each nonempty stringSthmultiplicatively
and uniquely as: 2 - - - ¢, Wheren is the length of the We adopt the following notational conventions. We shall

string andry, 2, - -+, x, € &, we write the empty string denote the set of variables, the set of terminal symbols, and
in 8* aslg. the set of production rules for a context-free gramréaby
« If z andy are elements of*, we define the produatyto V(G), T(G), and P(G), respectively. When a variable in
be the element o§* such that V(@) is denoted §,” that will always mean that the variable is
i) If « = 1, thenzy = y; if y = g, thenzy = . the start symbol. Upper case symbdisB, C, D, .- (with or
i) If 2 # 1¢ andy 7& 15‘ ’thén i without subscripts) are used to denote variables, and lower case
’ symbolsa, b, ¢, d, --- (with or without subscripts) are used
TY =TT T2 Y to denote terminal symbols. Given a context-free graméiar

and a variabled € V (@), there may exist aniqueproduction
wherexizs - --x, andyi1yo - - - y,,, are the unique rule in P(G) whose left member isi; we shall refer to this
multiplicative representations aof andy, respec- production rule as “thel production rule.”

tively. Let G be a context-free grammar. df and 5 are strings in
The multiplication operatiofz, y) — zy onS* is asso- V(@ uT(@)”
ciative. Therefore, givesy, s, ---, s; € S*, the product « We writece & 73 if there are stringsy; , a2 and a produc-
s182---s; is an unambiguously defined element8f. tion rule A — ~ of G such thatley, A,) is a parsing
(The SetS*, W|th the mult|p-||cat|0n we have deﬂned, IS of o« and (Oél, v, 062) is a parsing ot[} (|n other WordS,
called amultiplicative monoid we obtaing from « by replacing some variable im with
* A parsing of a string« € &* is any sequence the right member of a production rule whose left member
(u1, w2, * <+, Upy) IN Which uy, ug, -+, u,, are strings is that variable.)
in 5™ such thatuuz -+ - um = u. - We write « < 3 if there exists a sequence of strings
« St denotes the set* with the empty strind s removed. a1, ao, - -+, ag such that
» Foreach positive integer, S™ denotes the set of all strings a a a
in * of lengthn. Q== ag, az—ag, e, ap1 o =

« All logarithms are to base two.
The languagd.(G) generated by is defined by

Il. ADMISSIBLE GRAMMARS L(G) 2 {ueT*: S:G> u}.

In this section, we introduce a subclass of the class of all
context-free grammars called the clasadissible grammars
For each admissible grammé@y, it is guaranteed that

We are now ready to define the notion of an admissible
grammar. We define a context-free gramréato beadmissible
if all of the following properties hold.

L(G) = {=} (2.1 » (G is deterministic This means that for each variabtec

V(G), there is exactly one production rule®{G) whose

will hold for some stringe. A simple test is given, which will left member isA.

allow us to determine whether or not a grammar is admissible o))
(Theorem 2). We will also present an algorithm for the calcula- * The empty string is not the right member of any production
tion of the stringz in (2.1), from a given admissible grammar rule in P(G).

G (Theorem 3). * L(@) is nonempty.

KIEFFER AND YANG: GRAMMAR-BASED CODES: A NEW CLASS OF UNIVERSAL LOSSLESS SOURCE CODES 739

» G has no useless symbols. By this, we mean that for eachThe fixed pointu* (if it exists) of an L-system{S, f, u) is
symbolY € V(G) UT(G), Y # S, there exist finitely the unique strings* such that

many stringsy;, ao, - - -, «, such that at least one of the . N

strings containg” and cu €{f¥(u);: k=012 -}
o f(u*) =u".

S:algag,aggag,---,an_lganEL(G). f()

Supposé€= is a deterministic context-free grammar in which
It can be seen that for any deterministic grami@athe lan- the empty string is not the right member of any production rule.
guageL(G) is either empty or consists of exactly one stringwe definef; to be the endomorphism ¢i (G)UT(G))* such
Therefore, ifG is an admissible grammar, there exists a uniquRat
stringz € T(G)™* such thatL(G) = {z}. This stringz shall be
called thedata string representeldy G. We shall also say that * Ja(a) = a, a € T(G)
@ representse. * If A — «is a production rule of7, then f;(A) = «.

When we want to specify an admissible gramiiawe need \ye have recounted standard background material on con-

only list the production rules ofr, becauseé’(G), T(G), and oyt free grammars and L-systems. We now present new ma-
the start symbaot' can be uniquely inferred from the productionyg,j,| \yhich will allow us to reconstruct a data string from an
rules. The set of variablds(G) will consist of the left members 4 icqiple grammar which represents it

of the production rules, the set of terminal symbi6ig7) will The following theorem indicates why L-systems are impor-

consist of the symbols which are not variables and which gyt 16 ys. (The proof, which is almost self-evident, is omitted.)
pear in the right members of the production rules, and the start

symbol S is the unique variable which does not appear in the Theorem 1:Let G be an admissible grammar. Then the data
right members of the production rules. stringz represented bg can be characterized as the fixed point

of the L-system(V(G) U T(G S).
Example 1: Suppose that a gramm@r(which will be shown ystem(V (&) UT(&), fe, 5)

to be admissible in Example 2) has production rules Derivation Graphs: Let G be a deterministic context-free
Ap — aA;ArAs grammar for which the empty string is not the right member of
any production rule. We can associate witha finite directed
Ay — ab graph called theerivation graphof G. There aréV (G)UT(G)|
Ay — Ard vertices in the derivation graph 6f. Each vertex of the deriva-
Az — Asb. tion graph is labeled with a symbol froMi(G) U T(G), with

Looking at the left members of the production rules, we see tH3} tWO Vertices carrying the same label. There|dig)| ter-
minal vertices in the derivation graph, whose labels come from
V(G) = {Ao, A1, Az, A3}

T(G), whereas the labels on the nonterminal vertices come from
Of these four variablesd, is the only one not appearing inV(G). If a nonterminal vertex is labeled by a variable €

the right members, and so the start symbol of the granhary (@), and if A — Y1Y5 - - Y} is the A production rule, then

is § = Ay. Striking outA;, A, Az from the right members, there arek edges emanating from the vertex; the labels on the

the remaining symbols give WS(G) = {a, b}. It will be de- vertices at which these edges terminatelareYs, - - -, Y, re-
termined in Example 3 that the data string represente@ iy~ spectively. We shall refer to a vertex of the derivation graph of
aababbabbb. This means thak(G) = {aababbabbb}. G labeled byY € V(G) UT(G) as the Y vertex.”

Let S be afinite set. Arendomorphisnon S* is a mapping/

Wi the derivati h of rGaio ded
from S* into itself such that the following two conditions hold: © can use e cervation graph o a gram eduee

certain properties of the grammar. Before we do that, we discuss
s f(ls) = 1s some characteristics of directed graphspdth in a directed
o Flugug) = fur)f(ug), wi, uy € S*. graph is a finite or infinite sequende; } of edges of the graph,
_ Jlunua) = Jlu) 2? ! _ : _ _ such that for every pair of consecutive edges ;41) from the
Notice that an endomorphlsgﬁon S*Is unlquely determined sequence, the ed@@terminates at the vertex where edg$1

oncef(u) € S* has been specified for everye S. begins. A directed graph is said tofo®tedat one of its vertices
Given an endomorphisrfion §*, we can define a family of 4 if for each vertex,’ # v of the graph, there is a path whose
endomorphismg f*: k =0, 1, 2, ---} onS* by first edge begins at and whose last edge ends:t A path
f° = identity map in a directed graph which begins and ends at the same vertex
fl=y is called acycle A directed graph with no cycles is called an

4 - " acyclicgraph.
FE(w) = F(FHw)), k22 ues The following theorem, proved in Appendix A, gives us some
Following [17] and [21], an L-systefris a triple(S, f, u)in simple conditions to check to see whether a grammar is admis-
which sible.
» S is afinite set.
» fis an endomorphism of*.
o u € 5%,

Theorem 2: Let G be a deterministic context-free grammar
such that the empty string is not the right member of any produc-
tion rule of G. Then the following three statements are equiva-
1Sometimes referred to as a DOL system. lent:

740 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 3, MAY 2000

i) G is admissible. A Useful EndomorphismLet G be an admissible grammatr.
ii) The derivation graph of? is acyclic and is rooted at the In view of Theorem 4, we may define a mappirfg® from
S vertex. (V(G) U T(G))*" into itself such that, ifu is any string in

(V(G)UT(G))*, thenf& (u) is the fixed point of the L-system
(V(GYUT(Q), fa, u). The following result gives us a number
of properties of the mapping that shall be needed later on.

i)y £V N(S) e T(G)* and each symbol it (G) UT(G)
is an entry of at least one of the strings(S), i =
07 17 T |V(G)|

Example 2: The grammar in Example 1 has the derivation Theorem 5:Let 7 be an admissible grammar. Then

graph i) f& is an endomorphism ofV’ (G) U T(G))*.
i) f&(w) € T(G)T foreachu € (V(G)UT(G)T.
Ao iii) For eachu € (V(G)UT(G))*+

J& () = 15 Vl(w).
iv) If A — «is a production rule o€z, then

J&(A) = f&(a).

a A A, As Proof of Theorem 5:Properties i) and ii) are trivially seen
to be true. Property iii) is a consequence of Theorem 4. Property
iv) follows from The factthatifA — « is a production rule, then
the sequencéfi(«): ¢ > 1} is obtained by throwing away the
first term of the sequencgfi(A): ¢ > 0}, whence the fixed
b points arising from these sequences are the same.

lll. GRAMMAR TRANSFORMS

Notice that the graph is acyclic, and is rooted at the vertex la- he grammar transform in Fig. 1 is the most important com-

beled with the start symbd = Ag. Theorem 2 allows us to ponent of a grammar-based code. Formally, a grammar trans-

conclude that the grammé# is admissible. form shall be defined as a mapping which assigns to each data
The following theorem, which follows from Theorem 2, give$tring a grammar which represents the string. This section is de-

us an algorithm for computing the data string represented by é¥€d to the study of grammar transforms. We shall focus on two
admissible grammar. general classes of grammar transforms:asgmpotically com-

o pact grammar transformgSection 111-A) and theirreducible
Theorem 3: Let G be an admissible grammar. Then the daté‘rammar transformgSection 111-B).

stringz represented bg is computed by doing the calculation ko the rest of the paper, we lgt denote an arbitrary finite

T = fgf(G)l (S). (2.3) setof size at least two; the sdtshall serve as the alphabet from

which our data strings are to be drawn. We shall call a string in

Example 3: Let & again be the grammar in Example 1. Fromy+ an _4-string. We fix a countably infinite set of symbols
Example 2, we know thaf? is admissible. SincgV(G)| =

4, Theorem 3 tells us that the data string represented by {Ao, A1, Az, A, -} (3.4)

4 H .
J&(Ao), which we compute as follows: from which we will select the variables to be used in forming the

fa(Ao) =aA; Az Az grammars to be employed in a grammar transform. We assume
f2(Ag) = aabA;bAsD that each of the symbols in (3.4) is not a member of the alphabet
F3(Ao) = aababbA, bb A

We defineG(.A) to be the set of all grammars satisfying

4 _
fa(Ao) = aababbabbb. the following properties:
Notice that condition iii) of Theorem 2 holds. (Each of the sym-

bols Ay, Ay, As, a, b appears at least once in the strings com- i) G is admissible.
puted above; alsgf(S) is a string inT(G)*.) This givesus i) T(G) C A.
another verification thaf? is admissible. iii) The start symbol of7 is Ag.
The following theorem generalizes Theorem 1 and follows iv) V(G) = {Ao, A1, Ao
easily from Theorem 2 in combination with Lemma 4 of Ap- S

pendix A. It shall be useful to us in subsequent sections of the ¥) |f We list the variables inV’ (&) in order of their first
paper. left-to-right appearance in the string

s A -1t

Theorem 4: Let @ be an admissible context-free grammar. FUA) (A0 f2(A0) - 1M 40) (35)
Let « be any string iV (G) U T(G))*t. Then, the L-system
(VIGYUT(G), fa, w) has a fixed point*, andu* € T(G)T.
The fixed pointe* is computable via the formula

u* = fgf(c)l(U) Ag, A1, Az, oo Av(e))-1-

then we obtain the list

KIEFFER AND YANG: GRAMMAR-BASED CODES: A NEW CLASS OF UNIVERSAL LOSSLESS SOURCE CODES 741

Discussion: For the purposes of this paper, the function of Employing this list, we rename the variables according to the
grammar is to represent a data string. From this point of viewjtescription
makes no difference what symbols are used as the “names” for

the variables iV (G). Indeed, in reconstructing a data string 5= Ao
from a grammax& which represents it, the variables #(G) B—4A
are “"dummy” variables which are substituted for in the recon- A— Ay
struction process. By means of property v), we have required D — Ag
that the variables i (&) be named in a fixed way, according to C— A,

a “canonical ordering” of the variables Ii(G). Our canonical o .
ordering is the unique ordering induced by the depth-first seariétereby obtaining the grammg] in G({a, b}) whose produc-
through the vertices of the derivation graph@fin which the tion rules are

daughter vertices of a vertex are visited in order of the left-to-

. . X Ag — AjaAs

right appearance of terms in the right member of a produc-

tion rule of G. It is precisely this ordering that will allow the Ay — Agb

grammar decoder (implicit in the proof of Theorem 6 in Sec- Ay — ady

tion IV) to determine the name of each new variable that must Az — ab

be decoded (if the decoder has previqusly dealt \{vith varial_oles Ay — bA;. (3.6)
Aq, Az, -+ -, A, then the next new variable that will appear in]
the decoding process will hd,,, ,1). The grammarsG and [G] both represent the data string

Given any gramma? which is not inG(.A), but which satis- @bbaababb. _ _ _
fies properties i) and i), one can rename the variablds (i) A grammar transfornis a mapping fromA™ into G(.A) such
in a unique way so that properties iii)—v) will also be satighatthe grammat, € G(A) assigned to each-stringz repre-
fied. This gives us a new grammar, denoted[6§, which is Sentse. We adopt the notational convention of writimg— Gx.
a member ofG(.A) and which represents the same data strirf§ denote a grammar transform. In this notatiens a generic
asG. (If a grammard is already a member @¥(.A), we define yarlable den_otlng an arbitrarg-string, and?,, is the grammar
[G] = G.) The grammafG] shall be called theanonical form N G(A) assigned tar by the grammar transform.

of the grammax. Definition: In subsequent sections, we shall occasionally
Example 4: Consider the admissible gramm@mwhose pro- Make use of a set of grammags(.4) which is a proper subset
duction rules are of G(A). The setG*(.A) consists of all grammar§ € G(.A)

satisfying the property thafz°(A4) # f&°(B) wheneverd, B
are distinct variables froriy (G). At this point, it is not clear to

S — BaA the reader why the smaller set of gramm@t$.4) is needed.
A— aC This will become clear in Lemma 8 of Appendix B, where
B — Db use of a grammafy € G*(.A) to represent and-string
C—bB will allow us to set up a one-to-one correspondence between
certain entries of the right members of the production rules of
D — ab. G and substrings af forming the entries of a parsing of this
correspondence will allow us to relate the encoding of the right
One sees that members of7 (as described in Section V) to the left-to-right
encoding ofr in the usual manner of sequential encoders.
fa(s)y=5 A. Asymptotically Compact Grammar Transforms
f&(S) = BaA If G is any context-free grammar, 66| denote the total
fé(S) = DbaaC length of the right members of the production rulesthfWe
f2(8) = abbaabB say that a grammar transform— G, is asymptotically com-
FA(S) = abbaabDb. pactif both of the following properties hold.

i) For eachA-stringz, the grammar?,, belongs tag*(A).

Gl _
Multiplying these strings together as in (3.5), one obtains the i El _
string Asymptotically compact grammar transforms are important

for the following reason: Employing an asymptotically com-
pact grammar transform as the grammar transform in Fig. 1
yields a grammar-based code which is universal (Theorem
7). We present here two examples of asymptotically compact
grammar transforms, theempel-Ziv grammar transformand
the bisection grammar transform

1) Lempel-Ziv Grammar Transfornbetz = z1z2-- -z,
S, B, A, D, C. be anA-string. Let(uy, ua, - - -, u;) be the Lempel-Ziv parsing

i) lim,_ .o maxgcan

SBaADbaaCabbaabBabbaabDb.

Listing the variables i’ (@) in order of their first left-to-right
appearance in this string, the following list results:

742 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 3, MAY 2000

of 2, by which we mean the parsingsgstablished in the paper Discussion: The reader of [15] will find notions called pro-
[15] and used in the 1978 version of the Lempel—-Ziv data corducibility and reproducibility introduced there that allow one
pression algorithm [27]. Le$,(z) be the set of substrings @f to describe a recursive copying process for certain parsings of
defined by a data string (not just the parsing considered above). For each
A such parsing, it is easy to construct a grammar which embodies

Sia(®) = {2} Uy, uz, -+, e} this copying process and represents the given data string; the
For eachu € Si,(), let(s,, a,) be the parsing of: in which grammar we built in Example 5 was just one instance of this
a, € A, and letA* be a variable uniquely assigned#olLet paradigm.

GY be the admissible grammar such that 2) Bisection Grammar Transformtete = z,22-- - o, be
« The set of variables and the set of terminal symbols af@ arbitrary.A-string. LetSy,;s(x) be the following set of sub-
given by strings ofz:
V(GY) ={A"u € Syu(z)} Spis(®) 22} U {(2; 2igy - 2;): (i = 1)/ — i+ 1)
T(Gy) = {au:u € Syu(2)}. and log(j — i + 1) are integer.
 The start symbol isi* and the4® production rule is For eachu € Syis(2), let A be a variable uniquely assigned to
AT AW AYz L. A u. For eachu € Si5(x) of even length, lets(u, L), s(u, R))

be the parsing of in which the strings(«, L) ands(u, R) are
« For eachu € S;.(x) other thane, the A production rule of equal length. LeG2* be the admissible grammar such that

IS » The set of variables and the set of terminal symbols are
A% Afig given by
)) . V(G];is) = {Au: u e Sbis(.'l‘)}
Thel LempeI—Zly grammar transfornis the mapping T(GY) = {u € Spis(@): [u| = 1}.
z — [G¥] from AT into G(A). For the Lempel-Ziv parsing
(7%17 -+, uy) of an A-string x, let us writet = ¢(x) to (—_Jmpha- « The start symbol isA®.
ikzsvisihi?pendence of the number of phrases.dhis well e If u € Spio(2) and|u| = 1, the A production rule is

AY — .
max t(z) =0 < r) (3.7))

e An logn If v € 8,5(z) andlog |v| is a positive integer, thel®
from which it follows that the Lempel-Ziv grammar transform production rule is
is asymptotically compact. A s A7 T) g3 R).

Example 5: The Lempel-Ziv parsing of the data strimg—
010010000001 is (0, 1, 00, 10, 000, 001). The grammaG¥

If © € S,is(2) andlog |«| is not an integer (which means

has the production rules thatu = =), the A* production rule is
A.’B _>AOA1AOOA10AOOOA001 AY — AYL A¥2 L AW
00 0
AT =A% where (uy, uo, ---,) is the unique parsing at into
A0 — A'0 strings inSy,is() for which |z > |uy| > |ug| > -+ >
AOOO —>A000 |U/t|
A% — 491 Thebisection grammar transforis the mapping: — [G2]
A9 0 from AT into G(A). In the paper [13], it is shown that the bisec-
Al 1 tion grammar transform is asymptotically compact, and a loss-

less compression algorithm with good redundancy properties is
The grammarG%] can be verified by the reader to be theleveloped based upon the bisection grammar transform.

grammar inG* ({0, 1}) with the production rules Example 6: For the data string: = 0001010, we have

Ao = A1 A A Ay A5 A Shis(z) = {z, 0001, 01, 0, 00, 1}

Al —0 .

Ay —1 and the production rules of the gramn@@}* are
Ag —>A10 A® —>A0001A01A0

Ay — A0 AV 400 401

A5 — 450 A% 4040

AG — Agl AOl — AOAl

KIEFFER AND YANG: GRAMMAR-BASED CODES: A NEW CLASS OF UNIVERSAL LOSSLESS SOURCE CODES 743

A —o0
Al — 1.

First, we need to define the concepuminormalized entropy
which will be needed in this section and in subsequent parts of
the paper. Supposeis either a strings;us - - - u,, in @ multi-

We then see that the production rule§@t*] are given by plicative monoid or a parsin@ui, us, - - -, uy,) of a string in

Ag — A1 Az As a multiplicative monoid. For each € {u1, us, ---, u, }, let
Ay — AyA, m(s|u) be the number of entrigs efwhich are equal te
Ay — AgAs m(slu) = {1 < ¢ < niu = s}
Ar =0 We define the unnormalized entropy @fto be the following
° nonnegative real numbéef™ (u):
Ag — AzAs n
A n
5 H*(u) = log .
As — 1. (u) Z og <m(uz|u)>

=1
Let G be an arbitrary grammar f(.A); recalling the notation
we introduced in Section 11, we have

V(G) = {A07 A17 A27 ST, A|V(G)|_1}.
We definep¢ to be the following string of length(7|:

" . . pG = falAo) fa(A)fa(As) - fa(Avey 1) (4.2)
a.2) Ifvy, vy aredistinct variables it (&), thenf&>(v1) # Notice that the stringy is simply the product of the right mem-
& (v2). bers of the production rules iR(G). We definew to be the
Every variable iV (G) other than the start symbol ap-string obtained fromp; by removing fromp; the first left-to-
pears at least twice as an entry in the right members @fht appearance of each variablefin;, - - -, Ay (c)-1}- We
the production rules of the grammér. define the entropy{ (&) of the grammar? to be the number
There does not exist any pair, Y> of symbols in H(G) 2 H*(we).

V(@) U T(G) such that the strind’ Y> appears more

than once in nonoverlapping positions as a substring of Theorem 6: There is a one-to-one mappig: G(A) —
the right members of the production rules €er {0, 1}* such that

B. Irreducible Grammar Transforms

We define a context-free grammé@tto beirreducibleif the
following four properties are satisfied:

a.l) G is admissible.

a.3)

a.4)

Example 7: The admissible grammar with production rules + If G; and@s are distinct grammars i€i(.A), then the bi-

S — ACBBEA nary codeword3(G1) is not a prefix of the binary code-
A— DD word B(Gs).

» For eachG € G(A), the length of the codewor8 (&)
B —C10 o
O oD satisfies

—
[B(G)| < | Al +4|G| + [H(G)]. (4.2)

D —0F
E 11 (3.8) Proof: Given the gramma& € G(A), the binary code-

word B(G) has a parsingB;, Bz, Bs, Bs, Bs, Bg) in which

can be verified to be an irreducible grammar.) o)
i) B has length|V(G)| and indicates whaV' (G) is.

A grammar transforme — G, is defined to be airreducible (Specifically, B; consists of V(G)| — 1 zeros followed
grammar transfornif each grammaf?,, is irreducible. In prin- by a one.)
ciple, it is easy to obtain irreducible grammar transforms. One ii) B, has lengt.A| and tells whaif'(G) is. (For each ele-
can start with any grammar transfoum-— G, and exploit the m2ent of A, transmit a codebit to indica.te whether or not
presence of matching substrings in the right members of the pro- that elem;ant is I(G).)
duction rules of eact¥,, to reducer,, to anirreducible grammar e _)
representing in finitely many reduction steps. A wealth of dif- 11i) Bs has lengthG| and indicates the frequency with which
ferentirreducible grammar transforms are obtained by doingthe ~ €ach symbolitV(G)UT(G))—{5} appearsinthe right

reductions in different ways. In Section VI, we develop a sys-
tematic approach for reducing grammars to irreducible gram-
mars, and present examples of irreducible grammar transformsv)
which have yielded good performance in compression experi-
ments on real data.

V. ENTROPY AND CODING OF GRAMMARS N
Vi
In this section, we define the entrogy(G) of a grammar
G € G(A), and present a result (Theorem 6) stating that we can
losslessly encode eachusing approximatelyd (G) code bits.

members of the production rules 6t (Each frequency
is given a unary representation as in i).)

B, has length G| and indicates the lengths of the right
members of the production rules 6

v) B; has lengtHG| and indicates which entries pf; are

variables inV (@) appearing for the first time gs; is
scanned from left to right .

Bg has length at mostH (G)] and indicates whatg is.
The well-known enumerative encoding technique [4] is
used to obtairBg from w¢. This technique exploits the
frequencies of symbols ing learned fromB; to encode

744 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 3, MAY 2000

w¢ Into a codeword of length equal to the smallestinteger Stationary SourcesWe defineA;;.(.A4) to be the set of all
greater than or equal to the logarithm of the size of tredphabetA4 information sourceg for which

type class ofus (see [6] or the beginning of Appendix

B). From the definition off (G) and a standard bound p(x) = Z p(az), z €A

on the size of a type class [6, Lemma 2.3], it is clear that acA

the codeword length can be no more tHah(G)].

Fromw¢g and the information conveyed b¥;, the stringpq
can be reconstructed, since new variablegdnare numbered
consecutively as they first appear. Frpg and the information
conveyed byB,, the right members of the production rulesin
can be obtained, completing the reconstructio@ @fom B(G).

The members oA, (.A) are calledstationary sources
Lossless Source Code$Ve define analphabet.4 lossless
source codé¢o be a pairp = (4, &) in which

i) €4 isamapping (called the encodergfwhich maps each
A-string z into a codeword:,(z) € {0, 1} T, andé, is

The total length of the string8;, Bo, - -, Bg is at most the the mapping (called the decoderg)fwhich maps:,(z)
right side of (4.2). back intoz; and
ii) foreachn = 1, 2, ---, and each distinct pair of strings

Example 8: Consider the gramma¥ € G(.A) with the pro-

) S 1, x2 in A", the codeword,, () is not a prefix of the
duction rules given in (3.6). We have codewordey ().
pc = Aradz AzbaAsabbA, An alphabetA lossless source codgis defined to be an al-
wg = abaabbA; phabet4 grammar-based codéthere is a grammar transform

H(G) = H*(wg) =3 log <§) +3 log <§) Hog 7=10.14, & CesSuchthat
() = B(Gy), we At
Substitutingd (G), |G| = 11, and|.A| = 2 into (4.2), we see

that the codeword3(G) is of length no more tha?. The grammar transform in this definition shall be called the
grammar transform underlying the grammar-based codé/e
V. CODING THEOREMS isolate two classes of grammar-based codes. W&, l€t4) be

We embark upon the main section of the paper. A formal défl€ class of all alphabet grammar-based codes for which the
inition of the concept of grammar-based code is given. Specitfderlying grammar transform is asymptotically compact. We
redundancy bounds for a grammar-based code with respecieldi==(A) denote the class of all alphahdt grammar-based
families of finite-state information sources (Theorems 7 and §pdes for which the underlying grammar transform is irre-

are obtained. ducible. |
Information Sources:An alphabetA information sourcas ~ Redundancy ResultsThe type of redundancy we employ in

defined to be any mapping A* — [0, 1] such that this paper isnaximal pointwise redundancg notion of redun-
dancy that has been studied previously [20], [23]. hebe a

w(la) =1 family of alphabet4 information sources. Let be an alphabet

(x) = Z p(za), z e A" A lossless source code. Theh-order maximal pointwise re-

dundancy of¢ with respect to the family of sources is the

- L number defined by
Finite-State Sourcesl etk be a positive integer. An alphabet

A information source: is called akth-order finite-state source Red,,(¢, A) 2 n~! max sup [|es(z)| + log u(@)]. (5.5)
A

acA

if there is a setS of cardinalityk, a symbolsy, € S, and non- #CA™ ueA
negative real numberf(s, z|s'): s, s € S, = € A} such
that both of the following hold: We present two results concerning the asymptotic behavior
of the maximal pointwise redundancy for alphalZegrammar-
Z (s, z|s) =1, §es (5.3) based codes with respect to each family of sounges4) (k >
5@ 1). These are the main results of this paper.
j(z1@s - an) = Z ﬁ (s, zilsi_1), Theorem 7:Let ¢ be a grammar-based code from the class

C,c(A), and letx — G, be the grammar transform underlying
¢. Let {v,,} be a sequence of positive numbers converging to
zero such that

S1,82, 7, 8, €S =1

T1To "Xy € .A+. (54)

We let A% (A) denote the family of all alphabed kth-order
fipite-state sources. We call members of theLs;eA’;;s(A) fi- max 22 = O(u,).
nite-state sources A |z

Remark: If in addition to (5.3) and (5.4), we require that forThen, for every positive integér
) : o o .
each(z, s),_the quantityp(s, _a:|s)_ls nonva_n_lshlng forjyst one Red,, (¢, A (A)) = O(y(1)) (5.6)
s, then the finite-state sourgeds said to beunifilar. We point out
that our definition of finite-state source includes sources whic‘.’l‘r‘ere’y /
are not unifilar as well as those which are unifilar. ~(x) 2z log(1/x), z > 0.

is the function defined by

KIEFFER AND YANG: GRAMMAR-BASED CODES: A NEW CLASS OF UNIVERSAL LOSSLESS SOURCE CODES 745

Theorem 8: The class of codes,..(A) is asubset of the class The following two lemmas, together with Theorem 6, im-

of code<’,.(.A). Furthermore, for every positive integler mediately imply Theorems 7 and 8. They are proved in Ap-
pendix B.
k log log n)
jhax Redn (¢, A(A)) =0 Tlogn) Lemma 1: Letz be any.A4-string, and let3 be any grammar

Remarks:

in G*(A) which represents. Then, for every positive integer
k, and every: € A% (A)

i) Theorem 7 tells us that the maximal pointwise redun- H(G) < —log pu(x) + |G|(2 + log k)

iii) An alphabet.4 lossless source codg is said to be a

dancies asymptotically decay to zero for each code in Gl = V(@) +1

C..(A); the speed of decay is dependent upon the code. + 22|y <—> . (5.7)
Theorem 8 tells us that the maximal pointwise redun- ||

dancies decay to zero uniformly over the class of codes| emma 2: Let z be any.A-string of length at leastA|>.
Cir:(A), with the uniform speed of decay at least as fasthep

as a constant timdsg log n/log n.

An alphabet.4 lossless source codg is said to be a @ < ﬂ 12 log | A| (5.8)
weakly minimax universal cod@] with respect to a || = |¢| log|z| —8log|A| -8 '
family of alphabet4 information source4 if

lim 7Y (Jes(@)|+log p(@))u(@)=0, peA.
T peAn In concluding this section, we remark that our grammar-based
Theorem 7 tells us that every coded.(A) is a weakly encoding technique and Theorems 7 and 8 based on it are pred-
minimax universal code with respect to the family ofcated on the implicit assumption that a data strings first
sources i A% (A). It is then automatic that the codedatch-processed before formation of a grammar represeriting

in C..(A) are each weakly minimax with respect tanly after the batch processing and grammar formation can the
the family of sources\,;.(A) (easily established usinggrammar then be encoded. An approach involving less delay is
Markov approximations of stationary sources [9]). to form and encode production rules of a grammar on the fly
as we sequentially process the data from left to right, with the
grammar encoding terminating simultaneously with the sequen-
tial processing of the last data sample. The improved sequential
) . algorithm of [25] adopts this approach, necessitating a different
lim n 21613 Z (lea(@)| +log p(x))u(x) = 0. method for encoding grammars than used in Section 1V, as well

zCA”) o as new proofs of the universal coding theorems.
Theorem 7 tells us that every cod&in (A4) is a minimax

universal code with respect to each family of sources
AR (A), k> 1. VI. REDUCTION RULES

Ziv and Lempel define arnndividual sequenceéo be We present five reduction rules, such that if an admissible
an infinite sequencer,, =2, 3, - --) each of whose en- grammar is not irreducible, there will be at least one of the
tries z; belongs to the alphabed. These authors [26], five reduction rules which can be applied to the gram@igany
[27] have put forth a notion of what it means for an alof these rules applicable 16 will produce a new admissible

phabetA lossless source code to be a universal code wigliammarG’ satisfying the following properties.
respect to the family of individual sequences. (Leaving

aside the technical details, we point out that Ziv and
Lempel define a class of lossless codes called finite-state
codes, and define a code to be universal if it encodes eachi) G’ is closer to being irreducible tha (in a sense made
individual sequence asymptotically as well as each fi- clear in the discussion just prior to Section VI-A).
nite-state code.) It can be shown that if an alphaldet
lossless source codesatisfies

for any irreducible grammat# which represents.

minimax universal codg7] with respect to a family of
alphabetA information source4 if

i) G represents the same data string that is represented by

Reduction Rule 1:Let G be an admissible grammar. Ldt
be a variable of7 that appears only once in the right members

. 1 of the production rules of7. Let B — «Af3 be the unique
limsup |n sup (lep(z1wa -+ 2n)]

oo peak, (o) production rule in which_A appears in t_he right member. Let
A — ~ be theA production rule ofG. Simultaneously do the
¥ log plaize---an))| <0 following to the set of production rules &f:
 delete the production ruld — ~ from the production
for every & > 1 and every individual sequence rules ofG;

(z1, x2, - --), theng is a universal code with respectto * replace the production rule — «Ag with the production

the family of individual sequences. This fact, together ~ fule B — avf3.

with Theorem 7, allows us to conclude that every codeet P’ be the resulting smaller set of production rules. Defit\e

in C,.(A) is a universal code with respect to the familyto be the unique admissible grammar whose set of production
of individual sequences. rules isP’.

746 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 3, MAY 2000

Reduction Rule 2:Let G be an admissible grammar. Supposeemoving fromP* all production rules whose left member is
there is a production rule in U. DefineG’ to be the unique admissible grammar whose set

A — ay Pasfas (6.9) of production rules ig’.

where|3| > 2. Let B be a symbol which does not belong to Example 9: Consider the admissible gramntiwhose pro-
V(G@)UT(G). Perform the following operations simultaneouslyluction rules are

to P(G): S — AB
* replace the rule (6.9) with the rule A—CD
A — a;BasBas; B —aF
 append the ruld3 — S. C —ab
Let P’ be the resulting set of production rules. Defifieto be
. o . . D —cd
the unique admissible grammar whose set of production rules is
):4 E —bD.

Reduction Rule 3:Let G be an admissible grammar. Suppos%l;rt]ltc\?vitt?]agc (4) = J&'(B) = abed. Replace every on the

there are two distinct production rules of form

S —AA
A — o1 fa 6.10
1B (6.10) A—CD
wheref is of length at least two, either; or «. is not the empty C —ab
string, and eithetvs or vy is not the empty string. Let’ be a D —cd
symbol not appearing i (G) U T(G). Perform the following E S bD. (6.13)

operations simultaneously ().

» Replace the rule (6.10) with the rule Consider the gramma&™ in which

A— a1 Cas. V(aEd)={S, A, B,C,D, E}
« Replace the rule (6.11) with the rule (&) ={a, b, c d}
B — azCau. and P(G*) is the set of production rules listed in (6.13). Let
» Append the rule us compute the members B G*) which are useless symbols
with respect to the gramma*.
C—p We have
Let P’ be the resulting set of production rules. Defifieto be fe.(S)=S
the unique admissible grammar whose set of production rules is FLo(8) =44
/
P f&.(S)=CDCD
Reduction Rule 4:Let G be an admissible grammar. Suppose f2.(S) = abedabed, n > 3. (6.14)
there are two distinct production rules of the form -

The useless members &f(G*) are the members oF (G*)
A — a18Bas > . . .)
B3 6.12 not appearing in the right-hand sides of the equations in (6.14).
_ = _ _ (6.12) These are the variablésand £. Removing the two production
where/ is of length at least two, and eithag or a2 is notthe ryles from the list (6.13) which hav@ and E as left members,
empty string. InP(G), replace the production rule (6.12) withwe obtain the set of production rules
the production rule

S — AA

A — a1 Bas. ACD
Let P’ be the resulting set of production rules. Defifieto be ¢ —ab
the unique admissible grammar whose set of production rules is D —cd

/
. that uniquely defines an admissible gramr@arThe reader can
Reduction Rule 5Let G = (V, T, P, S) be an admissible verify that the grammar§ andG’ both represent the data string
grammar. Suppose there exist distinct variablef? € V such gpcdabed.
that f2°(A) = f2°(B). Let P* be the set of production rules
that results by substituting for each appearance @f in the
right members of the production rulesih Let I/ be the set of £ = 01101110011001110001110110110111.
those variables i which are useless symbols with respect to
the grammartV, T, P*, S). (Note that/ is nonempty, because We will obtain an irreducible grammar representinig finitely
B € U.) Let P’ be the set of production rules obtained bynany reduction steps, where on each reduction step, one of the

Example 10: Consider the data string

KIEFFER AND YANG: GRAMMAR-BASED CODES: A NEW CLASS OF UNIVERSAL LOSSLESS SOURCE CODES 747

reduction rules 2—4 is used. We start with the list of producticeduction rule is somewhat difficult to implement in practice,
rules consisting of just one rule however. We limited ourselves to reduction rules 1-5 because

« reduction rules 1-5 are simple to implement;

S -
- « reduction rules 1-5 yield grammars which are sufficiently
Applying reduction rule 2, we get the following list of produc- reduced so as to yield excellent data compression capa-
tion rules: bility (Theorem 8).
S — A0011001110001110114 Remark: Cook et al. [3] developed a hill-climbing search
A — 0110111, process to infer a simple gramm@whose languagé(G) con-

. tains a given set of string$. The grammar inferred by their al-
We apply reduction rule 2 again, getting the list of prOdUCtIOBorithm locally minimizes an objective functidd (G|S) which

rules measures the “goodness of fit” of the gramniato the set of
S — A0011BB11A4 stringssS. It is interesting to note that reduction rules 1-4 were
A —0110111 proposed in [3] as part of the search process, along with some
B —001110. other rules. However, unlike our approach in the present paper,

Cooket al.do a reduction step only if the objective function is

Applying reduction rule 3, we obtain made smaller by doing so

S — ACBBI11A Using reduction rules 1-5, it is possible to design a variety
A —0110111 of irreducible grammar transforms. We discuss two of these,
B —C10 thelongest matching substring algorithamd themodified SE-

UITUR algorithm
C —0011. Q g
The following is then obtained via application of reduction rul

2 followed by reduction rule 4:
S — ACBBI11A For a given data string, start with the trivial grammar con-

sisting of the single production rulg¢ — z, and then look for

A Longest Matching Substring Algorithm

A—DD1 a substring ofe that is as long as possible and appears in at
B —C10 least two nonoverlapping positions an (We call such a sub-
C —0D string alongest matching substringA first round of reduc-
D —011. tions using reduction rules 2—4 is then performed, in which

ADDIVi ducti le 3 at thi int vields the list of prod each nonoverlapping appearance of the longest matching sub-
pplying reduction rule 3 at this point yields the list of pro UCétring is replaced by a variable, resulting in a new grammar.

tion rules (3.8), Wh'Ch IS seen to define an |rredu0|_ble grammagly subsequent rounds of reductions, one first detects a longest
This grammar will automatically represent the string

matching substring (the longedtstring appearing in nonover-
Discussion: Notice that in the preceding example, we startedpping positions in the right members of the previously con-
with a grammar representing our data string and obtained $tructed grammar), and then applies reduction rules 2—4 to ob-
irreducible grammar representing the same string via finitelgin a new grammar. The rounds of reductions terminate as soon
many reduction steps, in which each reduction step involvég a grammar is found for which no longest matching substring
exactly one of the reduction rules 1-5. How can we be sure tit@n be found. This grammar is irreducible and represents
it is always possible to do this? To answer this question, defi&lling this grammaé.., we have defined a grammar transform
e(@) 226 - V(@) Sting sigorithm. Example 10 flustiates the use of the onges
for any admissible grammak. The numberC(G) is @ posi- matching substring algorithm. In each list of production rules
tive integer for any admissible grammar Also, the reader can that was generated in Example 10, the right member of the last
check that if the gramma(¥’ is obtained from the gramméfby e jisted is the longest matching substring that was used in the

applying one of the reduction rules 1-5, the(G') < C(G). round of reductions that led to that list.
From these facts, it follows that if we start with a gramngar

which is not_wredumble, the_n in at moéI(G) -1 redu_ctlo_n B. Modified SEQUITUR Algorithm
steps (in which each reduction step involves the application of
exactly one of the reduction rules 1-5), we will arrive at an irre- Process the data striag= z;z> - - - z,, one data sample at a
ducible grammar representing the same data striidg #&does time, from left to right. Irreducible grammars are generated re-
not matter how the reductions are done—they will always leadrsively, with theith grammarG; representing the firstdata
to an irreducible grammar in finitely many steps. samples. Each new data samplds appended to the right end
Remark: It is possible to define more reduction rules thaof the right member of the production rule of the previous
reduction rules 1-5. For example, if the right members of tigammarG;_;, and then reductions take place to generate the
production rules of a grammd¥ contain nonoverlapping sub-next grammarG; before the next sample;; is processed.
stringsa # o for which f&°(a) = f&°(«/), one can reduce Since only one sample is appended at each stage of recursive
G by replacinge, o with a new variabled, while introducing grammar formation, the reductions that need to be performed to
a new production rule (eithed — « or A — «'). This new recursively generate the irreducible grammggs} are simple.

748 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 3, MAY 2000

The final grammaxz,, is an irreducible grammar which repre-tation, either the computation goes on forever or the machine
sents the entire data strimg Calling this final gramma¢7,;, we halts after finitely many computational cycles. We say that a
have defined a grammar transfomm— G,. We call this trans- Turing machine computes aA-string x1z2 - - - z,, if the ma-
form the modified SEQUITUR algorithm because of its resenthine halts with consecutive tape cdllg, Cs, -- -, C,, having
blance to the SEQUITUR algorithm studied in [18] and [19]. contentsey, x», - - -, x,, respectively, and with every other tape

Remark: The SEQUITUR algorithm [18], [19] can generatecell having blank content. The reader now sees that in our for-
a grammarQ, representing a data string which is not a mulation, given a Turing machirig, either i) there exists exactly
member of the set of grammaFs$(A), and therefore we cannotone . A-string such thatl” computese, or else the machin®
apply Theorem 8 to the SEQUITUR algorithm. It is an openomputes no string id™ (meaning that the machine did not
problem whether the SEQUITUR algorithm leads to a univershalt, or else halted with cell contents not of the proper form de-
source code. On the other hand, the modified SEQUITUstribed previously).
algorithm does lead to a universal source code. General Framework:Letr = (T3, 15, -- -) be any sequence

of Turing machines such that the following property holds:

Ve e A, T; computese for at least oné. (7.15)

Let By, Bs, Bz, --- be the lexicographical ordering of all bi-

We conclude the paper by embedding our grammar-basegty strings in{0, 1}*. (This is the sequendg 1,00, 01, 10,
coding approach into a general framework which lends perspgg- oo, 001, etc.) Define

tive to the approach and allows one to more easily relate the ap- AL +
proach to other source coding approaches. C(z|r) = min{|Bi|: T; computese}, € AT

Our general framework employs Turing machines. We adoptso, define a lossless alphahétsource code to be a-based
the usual definition of Turing machine (see [16, pp. 26—-27]§0de if for eachA-string, the codeword into whicke is en-
considering all Turing machines whose output alphabet is theded is ab; € {B1, B, -- -} such thall; computese.
set.A. Each Turing machine possesses a doubly infinite tapeThe following coding theorem is an easy consequence of
consisting of cells these definitions.

o, Cog, Cyq, Gy, C, G,y - Theorem 9:LetT = (13, T3, - - -) satisfy (7.15). Then
which are linked together from left to right in the indicated a) for anyr based code
order; each cell’; can store a symbol frord or else its content Clalr) < Jes(®)| ze At
is blank. There is also a read/write head which can be positioned = FoA/1 ’
over any of the cells on the machine tape. A Turing machineP) there exists a-based code such that
executes a computation by going through finitely or infinitely Clz|T) = |eg(x), ze At (7.16)
many computational cycles, possibly changing its machine state__ _ L
during each cycle. A computational cycle of a Turing machine Piscussion: Let us call ar-based code satisfying (7.16) an
consists of an operation of one of the following two types. OPtimalT-based code. Letus call the functien- C(z|7) from

. . . . *Tto{1, 2, 3, ---} ther complexity function. Theorem 9 tells
') Read/write head is moved one cell to the left or right 0%that there is an optimatbased code, and that its codeword

its current position, and the machine moves to a new stf?\ . . .
. ength performance is governed by theomplexity function.
or stays in the same state.

i) Read/write head stays in its current position, and eithe By changingr, we get different families of -based codes, as

¢ , T

symbol from.A or a blank is written into the cell below, tfe following two examples indicate.

replacing the previous cell content, or the machine stateExample 11: Let = (T3, T», - - -) be an effective enumera-

is changed (or both). tion of all Turing machines, as described in [16, Sec. 1.4.1]. The
In our use of Turing machines, we differ from the standargcomplexity function is then the Kolmogorov complexity func-
approach in that we do not program our Turing machines. G}Q” [16, pp. 90-91]. The family of-based codes is very wide.
Turing machine is programmed by placing finitely many inJ0 See this, le€...(A) be the family of all alphabet lossless
puts in the cells of the machine tape before the machine g&&4!rce codes whose encoder|s_aone—t9—onetota}l recursive func-
through its first computational cycle—the inputs can be varidiph 0n.A* and whose decoder is a partial recursive function on
to induce the machine to produce different computations.) W&: 1} Let ¢ be a code if€..(A). Using the invariance the-
always assume that in performing a computation using a givef#m of Kolmogorov complexity theory [16, Sec. 2.1], one can
Turing machine, the initial configuration of the machine’s inputhow that there is a positive constéhtand ar-based code/
tape is “all cells blank” (in other words, the input to the mall Crec(:A) such that
chine is the empty string). By initializing the machine’s tape e (x) < eg(x) + C, ze AT
cells to be blank, the machine is set up to do one and only 08 the other hand, any optimalbased code is not a member of
computation. (Nothing is lost by doing this—if a string is comg, _ (4), because, if it were, there would be a computable ver-
puted using a Turing machine whose initial tape configuratiafion of the Kolmogorov complexity function, and this is known

has finitely many nonblank cells, it is not hard to construct anpt to be true (the paper [12] refutes rather strongly this notion).
other Turing machine which starts with blank cells and emulates

the computations done on the first machine after finitely many Example 12: Let
computational cycles.) When a Turing machine does a compu- Gt G2 GG, -

VII. CONCLUSIONS

KIEFFER AND YANG: GRAMMAR-BASED CODES: A NEW CLASS OF UNIVERSAL LOSSLESS SOURCE CODES 749

be the ordering of the grammars §{.4) such that the corre- Proof: We suppose that the conclusion of the lemma is
sponding codewords false, and prove that there must exist a cycle in the derivation
B(GY), B(G?), B(G®), B(G%), --- graph. LetS be the set of all variables ¥i(G) which are entries

of u. By assumptions is not empty. For eacl € S, letS(A4)

are in lexicographical order. For each € G(.A), define the be the set

new codewordB(G)* in which B(G)* = B; for that: for) 4

which Gi = G. Since|B(G)*| < |B(G)| for every@, we lose S(4) ={B € V(G): Bis an entry of somg;(A), i > 1}.
nothing by redefining the concept of grammar-based code to setice that each variable i (G) appearing in at least one of
the codeword§ B(G)*: G € G(A)} instead of the codewordsthe stringsf&(w), ¢ > 1, must lie in the union of the sefX A).
{B(G): G € G(A)}. Accordingly, let us now define a code Since the conclusion of the lemma was assumed to be false, for
to be a grammar-based code if there exists a grammar transf@mehA € S, there exists3 € S such thatd € S(B). Pick an

x — G for which infinite sequenced!, A%, A2 -..from S such that

eo(®) = B(Gp)*, =z AT At e S(ATY, P> (8.17)
For each grammat in G(.A), one can construct a Turing ma-Since the sef is finite, there must existl € S and positive

chineZ’(@) with control function based on the production ruleitegersi; < iz such that
of GG, which computes the data string representedGbylet At — A2 — A (8.18)

— 1 PANENE i _ i
fTa;iI(T;J(fG r)a’an(gr_)b’ase)d I:c?ef:n;lrl]ye?goPeasaendoci'(:;:d;;ge Observe that iB € S(A), then there is a path in the derivation
yorg) ' b agh which starts at thd vertex and ends at thB vertex.

code is an optimal grammar-based code. It can be seen that ttiér

is an optimal grammar-based code belonging to the family Opplying this observation to the statgments in. (8.17) for' Wh.iCh
code<,.(A) introduced in Example 11. The complexity func-* S i < iy — 1, we see that there is a path in the derivation
tion2 — C(z|7), which describes the codeword length perforgraph such that the vgrtlces VISIte4d by the path, in order, are
mance of optimal grammar-based codes, is computable, unlike At AT AR AT

the Kolmogorov complexity function (although we conjectur&elation (8.18) tells us that this path begins and end$ and
that there is no polynomial time algorithm which computes aa therefore a cycle.

optimal grammar-based code or_th_ls complexity function). Fl’." Lemma 4: Let G be a deterministic context-free grammar for
ture research could focus on obtaining bounds on the complexvl\'%ch the empty string is not the riaht member of anv produc-
functionz — C(z|7) so that we could have a better idea of hovyi Py 9 9 yp

optimal grammar-based codes perform. on rule of G, and for which the derivation graph is acyclic.

We conclude the paper by remarking that the Chomsky hie-[;hen

archy of grammars [10, Ch. 9] can be mined to provide other d My eT(@*, Vue (V(GUTG)T.
instances in which it might be useful to look at a family of Proof: Fixu € (V(G)U T(G))*. We assume that

T-based codes for a sequence of machinassociated with a g’(G)I(u) ¢ T(G)* (8.19)

set of grammars. To illustrate, the set of context-sensitive gram- . -

mars belongs to the Chomsky hierarchy. Each data string co@f&d show that this leads to a contradiction. Th.e‘ assump-
be represented using a context-sensitive grammar, and thetho'a (8.19) leads us to conclude that each Smﬁg{“)’.
machine could be constructed which computes the data strifg, 0,1, [V(G)], must have at_least one entry wh|c_h IS a
using the production rules of the grammar as part of the m ember OﬂO/(Gz' Applylln‘g(g)\le previous lemma, there exists a
chine’s logic. Lettingr be an enumeration of these machine§€duenced’, A, -, 4 of variables fromV(G) such
the corresponding family of-based codes (which is strictlythat the following hald.

larger than the family of grammar-based codes of this paper), i) A’ is an entry offi(u), i =0, 1, ---, [V(G)|.
might contain codes of practical significance that are waiting to jj) For eachi = 0, 1, - -, |V(G)|, the variable4’ is not an
be discovered. entry of any of the stringgZ (u), j > .
There are more terms in the sequent® A!, --., AV
than there are members@{ &). Therefore, we may find a vari-
_ _ APPENDIX A able A and integers; < i, from the set{0, 1, ---, |V(G)|}
Inthis appendix, we prove Theorem 2 by means of a sequengfh thatd* — Az — A. Because of statements i) and ii)
of lemmas. above, we see that’, and therefored, is an entry off& (u)

Lemma 3: Let G be a deterministic context-free grammaPut not an entry of; (). From statement i) above, we see that
such that the empty string is not the right member of any produd=* an(_i thereforeAz IS an entry off¢ (u). We have arrived at
tion rule of G. Suppose that the derivation graph®fs acyclic. the desired contradiction.

Let “fe astring in(V(&) U T(G))* which is not a string in | emma 5: Let G be a deterministic context-free grammar
T(G)™. Then there exists a variablé € V() such that both for \yhich the empty string is not the right member of any

of the following hold: production rule ofG, and for which the derivation graph
* Ais an entry ofu; is acyclic and rooted at the& vertex. Then each symbol
« Ais not an entry of any of the stringf.(v), ¢ = in V(G) U T(G) is an entry of at least one of the strings

17 27"" fé}(s)v i:()v 177|V(G)|

750 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 3, MAY 2000

Proof: If Y € V(G)UT(G)andA € V(G), and there is of Theorem 2 implies statement iii) of Theorem 2 by Lemmas 4
a path in the derivation graph consistingi@dges which starts and 5. It is evident that statement iii) implies statement i).
attheA vertex and ends at thé vertex, then itis easy to see that
Y is an entry off;,(A). FixY € V(G)UT(G), Y # S. The
proof is complete once we show tHatis an entry off%(S) for
some positive integer< |V (G)|. Since the derivation graph is In this appendix, we prove Lemmas 1 and 2. We adopt a nota-
rooted atS, there is a patHey, ez, - -+, ¢; } which starts at the tion that will be helpful in these proofs: if andw are strings in
S vertex and ends at thE vertex. For eachi = 1, ---, 4, let the same multiplicative monoif*, we shall writex ~ v to de-
A7 € V(G) be the variable such that the edgestarts at the note thaty can be obtained by permuting the entries of the string
AJ vertex of the derivation graph. Since the derivation graphis (In the language of [6}x ~ v means that: andv belong to
acyclic, the terms in the sequendé, A%, ..., A’ are distinct the sameype clasg We first need to establish the following
members of’(G). Therefore, it must be that< |V(G)|. By lemma thatis an aid in proving Lemmas 1 and 2.
our observation at the beginning of the proof, we also have tha
Y is an entry off4(S). The proof is complete.

APPENDIX B

i emma 8: Given any grammaé; € G*(.A), there exists a
parsingr of the A-string represented b§ satisfying

Lemma 6: Let G be an admissible context-free grammar. H(G) < H*(m)+]q). (9.20)
Then the derivation graph &F is rooted at thes' vertex. Furthermorer is related taug in the following way: There is a

Proof: The proof is by induction. LeY” # S be a symbol stringo — o N VI UT(G) such that ~ and
in V(G)UT(G). We must show that there is a path in the deriva- ingo = o102+ i V(@) (@) su we

tion graph ofG which starts at thes vertex of the graph and T = ([& (1), f&(02), -+, [&(a1))- (9.21)
terminates at th& vertex of the graph. SincE is not a useless Proof: Fix G € G*(A). Letz be theA-string represented
symbol, we can find a sequence of strings o, - - -, az such by G. Find any strings for which there are strings;, 0 < ¢ <
that |[V(G)| — 1, satisfying

« ay is the right member of the production rule whose left) @0 = fa(Ao) anday (-1 = o.

member isS: i) Foreachl < ¢ < |V(@)| — 1, the stringe; is obtained
cif k> 1, thenaigaﬂrl, i=1, e k—1; from the stringw; 1 by replacing exactly one appearance
« Y is an entry ofo. of A; in a;—1 with fo(4;). (By this, we mean that there

exist stringsy;, 2 such thaty;, A4;, v2) is a parsing of
a;—1 and(v1, fa(A:), v2) is a parsing ofy;.)

é_etting t be the length of the string, write 0 = o102 - - - 0y,
wheresy, - -+, 0 € V(G) UT(G). Letw be the sequence of
substrings ofe defined by (9.21). Studying the construction in
i) and ii), it can be seen that ~ wg. We complete the proof by
showing thatr is a parsing ofe satisfying (9.20). From (9.21)
and the fact thaifg” is an endomorphismy is a parsing of
I%“’O(rf). Therefore,x will be a parsing ofe provided we can

Supposé: = 1. In the derivation tree, there is a path consisting
of one edge which starts at tl¥evertex and terminates at the
vertex. Supposk > 1. We may take as our induction hypothesi
the property that for every symbol ip, 1, there is a path in the
derivation graph leading from thg vertex to the vertex labeled
by that symbol. Pick an entryt € V(G) from a1 such that
«y, arises when the right member of theproduction rule is
substituted ford in «y_;. To a path leading from th& vertex
to the A vertex, we may then append an edge leading from t

A vertex to theY” vertex, thereby obtaining a path leading fromy oW that
the S vertex to theY” vertex. FE(A0) = [2(0). (9.22)
Lemma 7:Let G be an admissible context-free grammar. . ‘
Then the derivation graph @ is acyclic. From statement ii) above, for eath< i < |V(G)| — 1
Proof: SinceL(Q@) is notempty, for somé> 1, the string feo(aimt) = fE()FE(A) [E (72)
1&(S) is amember oL () and therefore a member & G)™*, F(0) = FEFE fa(AN ().

which |mpI|.es that the_ fpllowmg property holds. From conclusion iv) of Theorem 5, the two middle factors in the
Property: All but finitely many terms of the sequence .

; . o ; . right members of the preceding equations are equal, from which
{f&(S):¢ > 1} coincide with a string il (G)*.
Supposed, B are variables iV’ (G) and there is a path in we conclude that the left members are equal, and then (9.22)

the derivation graph leading from th&vertex to theB vertex. must h.OId' Using again thg fact that-~ @G'.the unnormalized
. . . ; entropies of these two strings must coincide, when
SinceA is not a useless symbol,is an entry off % (.S) for some

i. Using the path from thel vertex to theB3 vertex, one then sees H(G) = H"(we) = H" (o)
that B is an entry off,(S) for somej > 4. This implies that if and (9.20) will be true provided we can show that
there were a cycle in the derivation graph, satne V(G) (the H*(0) < H*(r) + |G| (9.23)

variable labeling the vertex at the beginning and the end of thgt +() be the string obtained from by striking out all en-

cycle) would be an entry ofg(S) for infinitely many. This 0o \which belong tdI'(G). Let () be the string obtained

being a contradiction of the Property, the derivation graph mLﬁt)m o by striking out all entries of which belong toV' ()
be acyclic. i

Fori = 1,2, let 7 be the subsequence of obtained by
Proof of Theorem 2:Statement i) of Theorem 2 impliesapplying f&° to the entries o). If (1) is the empty string
statement ii) of Theorem 2 by Lemmas 6 and 7. Statementdi if o2 is the empty string, then the mappirfg® provides

KIEFFER AND YANG: GRAMMAR-BASED CODES: A NEW CLASS OF UNIVERSAL LOSSLESS SOURCE CODES 751

even ‘ ‘
and odd | f&*(ay)| < Ifé’?(az.)I

fa(Ai), |fa(Ai)l

) >1 z

i§I>1 andodd |f& ()| < [f&(a1)
=1

y (
atan2) cioh el
(

' ajah oy, |fa
empty string, |fa

a one-to-one correspondence between the entriesasfdw, We can appeal to the concavity of the logarithm function to ob-
forcing H*(c) = H*(7) and the conclusion that (9.23) is truetain

So, we may assume that neither of the sequent®s o is Zt:]
the empty string. Properties of unnormalized entropy give us i o 1
log Ju;] <t~ log | = =tlog(n/t). (9.31
H*(0) <H"(0") + H*(0@) + |o] > o Jui] <7 log | = og(n/t). (9.31)

=1
H*(x) > H* (D) + H*(z?), (9.24) . _
We also have Combining (9.30) and (9.31), along with the fact that |G| —

V(G)| + 1, we see that (5.7) holds.
o (o®) — B () V(G)| (5.7)

H*(o®) =H"(x). (9.25) B. Proof of Lemma 2
Combining (9.24) with (9.25), and using the fact thet< |G|, The following lemma, used in the proof of Lemma 2, is easily
we obtain (9.23), completing the proof of Lemma 8. proved by mathematical induction.
A. Proof of Lemma 1 Lemma 9: Let « be a real number satisfying > 4/3. The

Fix a positive integek. Choose an arbitrary-string z, an foIIowm1:g statement holds for eve?/ integee> 2:

arbitrary grammars € G*(A) which represents, and an ar- D> (r—3 —Da” 9.32
bitrary alphabet4 kth-order finite-state source. We wish to Z nn=La” 2 (r=3) Z (n = 1)a™. (9-32)
establish the inequality (5.7). Letbe the length ok, and we \ye hegin our proof of Lemma 2 by fixing ad-stringz of

write outz asz = w1z - - - z,, Where each; € A. Appealing |ength at leastA|>. Let G be any irreducible grammar which
to the definition of the family of information sources;, (A), representse. We haveV (G) = {4o, A1, -+, Aoy 1}
we select a sef of cardinality, so € S, and nonnegative real \yhere, is the start symbol of. For eacto < i < |[V(G)|-1,
numbers{p(s, x|s'): s, s € S, = € A} such that (5.3) and \ye can express T
(5.4) hold. We introduce the function .A* — [0, 1] in which

n=2 n=2

fa(4) = 0410/2 el

m(y) 2 max > 11 e(sis wilsiz) where each; € AUV(G).Foreachi =0, 1, ---, [V(G)|-1,
0ESh L ss i em Sy i let (see the top of this page). Define the three strings
cs 1
for every A-stringy = 142 - - - ¥ We note for later use that =~ A roo
. . z=f&(pc)
for every A-stringy and every parsingu:, va, -- -, v;) of y, A s N .
the following relation holds: s(x) = fa(Ao) fa(Ar) -+ fa(Ap(a)-1)
7(y) < T(v1)7(v2) -7 (vy). (9.26) & = £ (s(@)).
There exists a probability distributigst on .4+ such that for The stringss(z) and £ are not the empty string because
every positive integer and everyy € A" |fa(A;)] > 1 for at least ong. Definem(x) to be the positive
p(Y) = Quk ™M r(y) (9.27) Integer
where it can be determined tha®; is a positive con- A |s(@)|
stant that must satisfyQ, > 1/2. Applying Lemma m(z) = 2
8, let # = (uy,uo, ---,u;) be a parsing ofz with
t = |G| — |[V(G)] + 1 such that (9.20) holds. We have We derive the following relationships which shall be useful to
t t us in the proof of Lemma 2:
H"(r) = min > —log g(u;) <D —log p*(w;) (9.28) | < |2| < 2Jz| (9.33)
=1 =1
where the minimum is over all probability distributiogson |G| < 3m(z) + | A (9.34)

AT, From (9.26) and (9.27)

t t
nx) < lH p*(ui)] [H {2k|ui|2}] : (9-29)
i=1 i=1 From the fact that ~ f2°(w¢) (deducible from Lemma 8),
Combining (9.20), (9.28), and (9.29), we have and the fact that

t
H(G) < —log u(@) +t(1+log k) + |G| +2 > log |us].

=1

|z| < || < 2|2+ |Al (9.35)

pa ~ Atz - Ay gy -1we
we deduce that
(9.30) &~ [F(Ardz - Apa)-1)T

752 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 3, MAY 2000

and, therefore, where eachy; € (AU V(G))2. BecauseZ is irreducible, the
%) = | f& (A1 Az - Apray—1)] + |- (9.36) stringswy, wz, -+, W) are distinct. We express eagh as
Since @ is irreducible, each of the variabled;, A, - -, w; = wiw?
Ay ()1 appears at least once iny, and therefore we must wherew;, w? € AUV (Q). Leta € AT be arbitrary. We need
have to upper-bound the cardinality of the set
|f&(ArAz - Ay -] < [f&(we)| = |2 (9.37) Wa ={1 <t <m(z): f&"(wi) = aF.

From (9.36) and (9.37), we conclude that (9.33) is true. To this end, let) be the mapping from the s&t,, into the set
Now we prove the relation (9.34). Sinc¢eis irreducible, if

|fa(A)| = 1foravariabled € V(G), thenfs(A) € A, where {1, 2, -+, Ja| =1} x {0, 1} x {0, 1}

{4 € V(G): |fa(A)| = 1} < |A] (9-38) in whichi € W, is mapped into
Using (9.38), we obtain o) = (£ (). by bo)

|G|: Z |fG(A)| G i /1 Ul V2
AeV(G) where for eacly = 1, 2
= Z |fa(A)]+ Z |fa(A)] p A2 JL wieA
|fe(A) [even /e (4) | odd 97 0, otherwise.
A
< 3M Since the mapping is one-to-one, we must have
2
|fo(A)] even
A) -1 (Wal < 4(laf - 1).
+ > 3 <%) +|Al. (9.39)
fe: (A)] odd We conclude that
Noting the expression at the bottom of this page, we see that - . - 1 £O0 (0 | — < d(n—1)| A" > 9
(9.34) follows from (9.39). I < i <mia): 1f5 (w)l = n}l < dln-DIAT" "6.43)
_ We nowtu_rn our attention to the proof of (9.35). By construgyqfine (jn:n > 2} and{k.:n > 2} to be the sequences of
tion of the strings(z) and (9.38), there are stringsandg, such integers
that
. A . . oo Y
) pa ~ s(@)qqo; In :Hl < i < m(@): [f& (wi)| = n}
i) 1 € A*and|g:| < |Af; kn =4(n = DA™

iii) if g is not the empty string, there is a one-to-one corrgyefine {M,:r > 2} and{N,:r > 2} to be the sequences of
spondence between the entriesypfand certain entries positive integers

of s(z) such thatifY” is an entry ofy; andZy is the cor-

responding entry of(z), then|f&*(Y)| < |f&(Zy)]. ML A 21: 1
If we apply the endomorphisrfig® to i), we see that =2
Because of iii) o
118 (22)] < 118 (s(@))] = I3]. (941) Notice that
Applying the relations (9.40) and (9.41) together with the fact i}
from ii) that |¢; | < |.A|, we conclude 2| > [A]P? > |APIAP? > 17]A]” > 16| A]” + | A].
2| =] + o] + /& (a2)] This fact implies, via (9.35), that
<2|F + A (9.42) . ,
from which (9.35) follows. %] 2 8JA]" = N:

Having demonstrated the relations (9.33)—(9.35), we can naWq <o we may define an integefe:
finish the proof of Lemma 2. Facte(z) as

s(x) = wiwa - Wn(a) r{x) 2 max{r : N, < ||}

) > 2 as follows:

+ X Alfe@I-1}

|fc (4)] odd
2

|f(, (A)| even

l > fe(4)
(2) =

KIEFFER AND YANG: GRAMMAR-BASED CODES: A NEW CLASS OF UNIVERSAL LOSSLESS SOURCE CODES 753

We establish a lower bound afiz). Notice that whereA > 0. From this we argue
- > njn= n(ky —jn)| + A
from which it follows that (@)1 =2
r(z) < log |2|. 00 [+ (=) n
On the other hand, nz%;)ﬂ = r(x) +1
N - " A
] < Ny @)1 SA(r(@) +1)r(2)? A"+ <8r(2)?| A+ +
r(e)+1

and so The preceding allows us to conclude that

log || <3+ 3 log r(2) + (r(2) + 1) log | A - r(z)
<3+ 3 log log |&] + (r(z) + 1)log |4 m@) =3 < |3 <1 _ 7(@%) i
n=2

n=

from which we conclude that -
log || — 3 log log |&| — 4 log |A] — 3 — < n)) A

(g) — 3 > . (9.44 + E ———) kn| + - (949

r(@) =32 log |A| (9.44) r(e)+1 r(z) +1 ()

n=2

We examine the right side of (9.44) in more detall. Itis a Simp@incej

< 4 lage with in th
exercise in calculus to show that S kn (see (9.43)), we may replage with k,, in the

first term on the right in (9.49) to obtain the bounds

log u ,
log 1 — 3 log log u > —— > 232, 9.45 A Nozy + A P
og U og log u >) u > (9.45) m(z) < My + < V@ 4 || (9.50)
. r(x) r(e) — 3 r(e) — 3
Notice that
o 5 53 where in the preceding we also used Lemma 9. Applying to
2| > AP > [A™ + |A] > 27 + | A] (9.50) the lower bound or(z) —3 that was established in (9.48),
we obtain
and, therefore, (@ A
m(x 2 log
, . 9.51
|| ~ log |z| — 8 log |A| — 8 (9-51)
& = 2% From the relationships (9.33)—(9.35), one can see that
Combining this fact with (9.45), we see that |Gl = A < m(z) < m(z) < m(z) (9.52)

| | g] ool = 2e] =l T ol

log |2|—3 log log || -4 log |A| -3 > T“l log [A[=3. Combining (9.51) and (9.52), we obtain (5.8), the desired con-
(9-46) clusion of Lemma 2.

From the fact that

2| > AP > 2| Al
ACKNOWLEDGMENT
it follows that)) _
The authors wish to thank W. Evans, R. Maier, A. Mantilla,

G. Nelson, M. Weinberger, and S. Yakowitz for helpful com-

& > |z] — |A| S m ments concerning this work. Special thanks are due to Prof. M.
- 2 — 4 Marcellin of the University of Arizona, Department of Electrical
and Computer Engineering, Prof. H. Flaschka of the University
and, therefore, of Arizona, Department of Mathematics, and Prof. J. Massey
log |Z]) log ||) of the Swiss Federal Institute of Technology, Zirich, Switzer-
5 4log |A| =32 5 4log |Al -4 land for arranging for financial support during the first author’s

>13log |A|—4>0. (9.47) 1996-1997 sabbatical that helped to make the completion of this

_ work possible.
Applying (9.47) to (9.44), we conclude that

log|z| — 8 log |A] — 8

r(z)—3> > 0. (9.48)

= 2 log | A REFERENCES
From the definition of-(x), we have [1] A.Aho, R. Sethi, and J. UllmarGompilers: Principles, Techniques, and
Tools Reading, MA: Addison-Wesley, 1986.
o r(z) [2] R. Cameron, “Source encoding using syntactic information source
- . models,”IEEE Trans. Inform. Theoryol. 34, pp. 843-850, July 1988.
2| = Ne@y+A= Z Njn = Z nkn | +A [3] C.Cook, A. Rosenfeld, and A. Aronson, “Grammatical inference by hill
n=2 =2 climbing,” Inform. Sci, vol. 10, pp. 59-80, 1976.

754

(4]
(5]
(6]
(7]
(8]
El

(20]

(11]

(12]

(13]

(14]

(15]

[16]

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 3, MAY 2000

T. Cover, “Enumerative source encodindZEE Trans. Inform. Theory
vol. IT-19, pp. 73-77, Jan. 1973.

(17]

T. Cover and J. Thomaglements of Information Theary New York: [18]
Wiley, 1991.

I. Csiszar and J. Kérnemformation Theory: Coding Theorems for Dis-

crete Memoryless Systema\ew York: Academic, 1981. [19]
L. Davisson, “Universal noiseless codindEEE Trans. Inform. Theory

vol. IT-19, pp. 783-795, Nov. 1973. [20]

J. Deller, J. Proakis, and J. Hans@&iscrete-Time Processing of Speech
Signals Englewood Cliffs, NJ: Macmillan, 1993.

C. Hobby and N. Ylvisaker, “Some structure theorems for stationary
probability measures on finite state sequencasyi. Math. Statistvol.

35, pp. 550-556, 1964.

J. Hopcroft and J. Ullmarnntroduction to Automata Theory, Languages, [22]
and Computation Reading, MA: Addison-Wesley, 1979.

E. Kawaguchi and T. Endo, “On a method of binary-picture representa{23]
tion and its application to data compressiofsEE Trans. Pattern Anal.
Machine Intell, vol. PAMI-2, pp. 27-35, 1980.

J. C. Kieffer and E.-H. Yang, “Sequential codes, lossless compressiof24]
of individual sequences, and Kolmogorov complexitiEE Trans. In-

form. Theoryvol. 42, pp. 29-39, Jan. 1996. [25]
J. Kieffer, E.-H. Yang, G. Nelson, and P. Cosman, “Universal lossless
compression via multilevel pattern matchindBEE Trans. Inform.
Theory to be published.

E. Kourapova and B. Ryabko, “Application of formal grammars for en- [26]
coding information sourcesProbl. Inform. Transm.vol. 31, pp. 23—-26,
1995.

A. Lempel and J. Ziv, “On the complexity of finite sequence&EE
Trans. Inform. Theoryol. IT-22, pp. 75-81, Jan. 1976.

M. Li and P. Vitanyi,An Introduction to Kolmogorov Complexity and its
Applications New York: Springer-Verlag, 1993.

(21]

(27]

A. Lindenmayer, “Mathematical models for cellular interaction in de-
velopment,”J. Theor. Biol, vol. 18, pp. 280-315, 1968.

C. Nevill-Manning and I. Witten, “Identifying hierarchical structure in
sequences: A linear-time algorithnm.” Artificial Intell. Res, vol. 7, pp.
67-82, 1997.

——, “Compression and explanation using hierarchical grammars,”
Comput. J.vol. 40, pp. 103-116, 1997.

E. Plotnik, M. Weinberger, and J. Ziv, “Upper bounds on the probability
of sequences emitted by finite-state sources and on the redundancy of
the Lempel-Ziv algorithm,IEEE Trans. Inform. Theorwol. 38, pp.
66-72, Jan. 1992.

G. Rozenberg and A. Salomaéhe Mathematical Theory of L Sys-
tems New York: Academic, 1980.

R. Schalkoff,Digital Image Processing and Computer VisiorNew
York: Wiley, 1989.

Y. Shtarkov, “Fuzzy estimation of unknown source model for universal
coding,” inProc. 1998 IEEE Information Theory Workshdfillarney,
Ireland, June 22-26, 1998, pp. 17-18.

J. Storer and T. Szymanski, “Data compression via textual substitution,”
J. Assoc. Comput. Maghvol. 29, pp. 928-951, 1982.

E.-h. Yang and J. Kieffer, “Efficient universal lossless data compres-
sion algorithms based on a greedy sequential grammar transform—Part
I: Without context models,IEEE Trans. Inform. Theorwol. 46, pp.
755-777, May 2000.

J. Ziv, “Coding theorems for individual sequencd&EE Trans. Inform.
Theory vol. IT-24, pp. 405-412, July 1978.

J. Ziv and A. Lempel, “Compression of individual sequences via vari-
able-rate coding,lEEE Trans. Inform. Theoryol. IT-24, pp. 530-536,
Sept. 1978.

