
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 3, MAY 2000 737

Grammar-Based Codes: A New Class of Universal
Lossless Source Codes

John C. Kieffer, Fellow, IEEE,and En-hui Yang, Member, IEEE

Abstract—We investigate a type of lossless source code called a
grammar-based code, which, in response to any input data string

over a fixed finite alphabet, selects a context-free grammar
representing in the sense that is the unique string belonging
to the language generated by . Lossless compression of takes
place indirectly via compression of the production rules of the
grammar . It is shown that, subject to some mild restrictions,
a grammar-based code is a universal code with respect to the
family of finite-state information sources over the finite alphabet.
Redundancy bounds for grammar-based codes are established.
Reduction rules for designing grammar-based codes are pre-
sented.

Index Terms—Chomsky hierarchy, context-free grammars, en-
tropy, Kolmogorov complexity, lossless coding, redundancy, uni-
versal coding.

I. INTRODUCTION

GRAMMARS (especially context-free grammars) have
many applications in engineering and computer science.

Some of these applications are speech recognition [8, Ch. 13],
image understanding [22, p. 289], compiler design [1], and
language modeling [10, Theorems 4.5, 4.6]. In this paper, we
shall be interested in using context-free grammars for lossless
data compression. There has been some previous work of
this nature, including the papers [3], [2], [11], [14], [24],[18].
Two approaches have been used. In one of these approaches
(as illustrated in [2], [11], and [14]), one fixes a context-free
grammar , known to both encoder and decoder, such that the
language generated by contains all of the data strings that
are to be compressed. To compress a particular data string, one
then compresses the derivation tree [2, p. 844] showing how the
given string is derived from the start symbol of the grammar.
In the second of the two approaches (exemplified by the papers
[3], [24], and [18]), a different context-free grammar is
assigned to each data string, so that the language generated by

is . If the data string is to be compressed, the encoder
transmits code bits to the decoder that allow reconstruction of
the grammar , from which the decoder infers. This second
approach is the approach that we employ in this paper. We

Manuscript received December 20, 1995; revised December 16, 1999. This
work was supported in part by the National Science Foundation under Grants
NCR-9304984, NCR-9508282, NCR-9627965, and by the Natural Sciences and
Engineering Research Council of Canada under Grant RGPIN203035-98.

J. C. Kieffer is with the Department of Electrical and Computer Engi-
neering, University of Minnesota, Minneapolis, MN 55455 USA (e-mail:
kieffer@ece.umn.edu).

E.-h. Yang is with the Department of Electrical and Computer Engi-
neering, University of Waterloo, Waterloo, Ont., Canada N2L 3G1 (e-mail:
ehyang@bbcr.uwaterloo.ca).

Communicated by M. Weinberger, Associate Editor for Source Coding.
Publisher Item Identifier S 0018-9448(00)03094-7.

Fig. 1. Encoder structure of grammar-based code.

shall put forth a class of lossless source codes that employ this
approach that we callgrammar-based codes. Unlike previous
workers using the second approach, we place our results in an
information-theoretic perspective, showing how to properly
design a grammar-based code so that it will be a universal code
with respect to the family of finite-state information sources on
a fixed finite alphabet.

In this section, we wish to give the reader an informal notion
of the idea of a grammar-based code. For this purpose, we do not
need a precise definition of the concept of context-free grammar
(this will be done in Section II). All we need to know about a
context-free grammar here is that it furnishes us with some
production rules via which we can construct certain sequences
over a finite alphabet which form what is called thelanguage
generated by , denoted by .

A grammar-based code consists of encoder and decoder.

• Fig. 1 depicts the encoder structure. Lettingdenote the
data string that is to be compressed, consisting of finitely
many terms chosen from some fixed finite alphabet, the
grammar transformin Fig. 1 constructs a context-free
grammar satisfying the property that ,
which tells us that may be inferred from because

is the unique string belonging to the language .
The grammar encoderin Fig. 1 assigns to the grammar

a binary codeword which is denoted .

• When the decoder is presented with the codeword ,
the data string is recovered by first reconstructing the
grammar , and then inferring from the production
rules of .

From the preceding, the reader can see that our philosophy is
not to directly compress the data string; instead, we try to “ex-
plain” by finding a grammar that is simple and generates

in the sense that . Since can be recovered
from , we can compress instead of . As the grammar

that we shall use to representwill be simple, we will get
good compression by compressing.

The main results of this paper (Theorems 7 and 8) tell us
that, under some weak restrictions, a grammar-based code is a
universal lossless source code for any finite-state information
source. We shall be able to obtain specific redundancy bounds
for grammar-based codes with respect to finite-state information

0018–9448/00$10.00 © 2000 IEEE

738 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 3, MAY 2000

sources. Also, we shall see how to design efficient grammar-
based codes by means of reduction rules.

As a result of this paper, the code designer is afforded with
more flexibility in universal lossless source code design. For
example, for some data strings, a properly designed grammar-
based code yields better compression performance than that af-
forded by the Lempel–Ziv universal data compression algorithm
[27].

Notation and Terminology:We explain the following nota-
tions and terminologies used throughout the paper:

• denotes the cardinality of a finite set.

• denotes the length of a stringof finite length.

• denotes the smallest positive integer greater than or
equal to the real number.

• denotes the set of all strings of finite length whose en-
tries come from the finite set, including the empty string.
We represent each nonempty string inmultiplicatively
and uniquely as , where is the length of the
string and ; we write the empty string
in as .

• If and are elements of , we define the product to
be the element of such that

i) If , then ; if , then .
ii) If and , then

where and are the unique
multiplicative representations of and , respec-
tively.

The multiplication operation on is asso-
ciative. Therefore, given , the product

is an unambiguously defined element of.
(The set , with the multiplication we have defined, is
called amultiplicative monoid.)

• A parsing of a string is any sequence
in which are strings

in such that .

• denotes the set with the empty string removed.

• For each positive integer, denotes the set of all strings
in of length .

• All logarithms are to base two.

II. A DMISSIBLE GRAMMARS

In this section, we introduce a subclass of the class of all
context-free grammars called the class ofadmissible grammars.
For each admissible grammar, it is guaranteed that

(2.1)

will hold for some string . A simple test is given, which will
allow us to determine whether or not a grammar is admissible
(Theorem 2). We will also present an algorithm for the calcula-
tion of the string in (2.1), from a given admissible grammar

(Theorem 3).

A production ruleis an expression of the form

(2.2)

where and for some finite set . The left member
(resp., right member) of the production rule (2.2) is defined to
be (resp.,). Following [10], acontext-free grammaris a
quadruple in which

• is a finite nonempty set whose elements shall be called
variables.

• is a finite nonempty set, disjoint from , whose ele-
ments shall be calledterminal symbols.

• is a finite set of production rules whose left members
come from and whose right members come from

. We assume that for each , there is at least one
production rule in whose left member is .

• is a special variable in called thestart symbol.

We adopt the following notational conventions. We shall
denote the set of variables, the set of terminal symbols, and
the set of production rules for a context-free grammarby

and respectively. When a variable in
is denoted “ ,” that will always mean that the variable is

the start symbol. Upper case symbols (with or
without subscripts) are used to denote variables, and lower case
symbols (with or without subscripts) are used
to denote terminal symbols. Given a context-free grammar,
and a variable , there may exist auniqueproduction
rule in whose left member is ; we shall refer to this
production rule as “the production rule.”

Let be a context-free grammar. If and are strings in

• We write if there are strings and a produc-
tion rule of such that is a parsing
of and is a parsing of . (In other words,
we obtain from by replacing some variable in with
the right member of a production rule whose left member
is that variable.)

• We write if there exists a sequence of strings
such that

The language generated by is defined by

We are now ready to define the notion of an admissible
grammar. We define a context-free grammarto beadmissible
if all of the following properties hold.

• is deterministic. This means that for each variable
, there is exactly one production rule in whose

left member is .

• The empty string is not the right member of any production
rule in .

• is nonempty.

KIEFFER AND YANG: GRAMMAR-BASED CODES: A NEW CLASS OF UNIVERSAL LOSSLESS SOURCE CODES 739

• has no useless symbols. By this, we mean that for each
symbol , , there exist finitely
many strings such that at least one of the
strings contains and

It can be seen that for any deterministic grammar, the lan-
guage is either empty or consists of exactly one string.
Therefore, if is an admissible grammar, there exists a unique
string such that . This string shall be
called thedata string representedby . We shall also say that

represents .
When we want to specify an admissible grammar, we need

only list the production rules of , because and
the start symbol can be uniquely inferred from the production
rules. The set of variables will consist of the left members
of the production rules, the set of terminal symbols will
consist of the symbols which are not variables and which ap-
pear in the right members of the production rules, and the start
symbol is the unique variable which does not appear in the
right members of the production rules.

Example 1: Suppose that a grammar(which will be shown
to be admissible in Example 2) has production rules

Looking at the left members of the production rules, we see that

Of these four variables, is the only one not appearing in
the right members, and so the start symbol of the grammar
is . Striking out from the right members,
the remaining symbols give us . It will be de-
termined in Example 3 that the data string represented byis

. This means that .
Let be a finite set. Anendomorphismon is a mapping

from into itself such that the following two conditions hold:

•

•

Notice that an endomorphismon is uniquely determined
once has been specified for every .

Given an endomorphism on , we can define a family of
endomorphisms on by

identity map

Following [17] and [21], an L-system1 is a triple in
which

• is a finite set.
• is an endomorphism on .
• .

1Sometimes referred to as a D0L system.

The fixed point (if it exists) of an L-system is
the unique string such that

•

•

Suppose is a deterministic context-free grammar in which
the empty string is not the right member of any production rule.
We define to be the endomorphism on such
that

•

• If is a production rule of , then .

We have recounted standard background material on con-
text-free grammars and L-systems. We now present new ma-
terial which will allow us to reconstruct a data string from an
admissible grammar which represents it.

The following theorem indicates why L-systems are impor-
tant to us. (The proof, which is almost self-evident, is omitted.)

Theorem 1: Let be an admissible grammar. Then the data
string represented by can be characterized as the fixed point
of the L-system .

Derivation Graphs: Let be a deterministic context-free
grammar for which the empty string is not the right member of
any production rule. We can associate witha finite directed
graph called thederivation graphof . There are
vertices in the derivation graph of. Each vertex of the deriva-
tion graph is labeled with a symbol from , with
no two vertices carrying the same label. There are ter-
minal vertices in the derivation graph, whose labels come from

, whereas the labels on the nonterminal vertices come from
. If a nonterminal vertex is labeled by a variable
, and if is the production rule, then

there are edges emanating from the vertex; the labels on the
vertices at which these edges terminate are , re-
spectively. We shall refer to a vertex of the derivation graph of

labeled by as the “ vertex.”

We can use the derivation graph of a grammarto deduce
certain properties of the grammar. Before we do that, we discuss
some characteristics of directed graphs. Apath in a directed
graph is a finite or infinite sequence of edges of the graph,
such that for every pair of consecutive edges from the
sequence, the edge terminates at the vertex where edge
begins. A directed graph is said to berootedat one of its vertices

if for each vertex of the graph, there is a path whose
first edge begins at and whose last edge ends at. A path
in a directed graph which begins and ends at the same vertex
is called acycle. A directed graph with no cycles is called an
acyclicgraph.

The following theorem, proved in Appendix A, gives us some
simple conditions to check to see whether a grammar is admis-
sible.

Theorem 2: Let be a deterministic context-free grammar
such that the empty string is not the right member of any produc-
tion rule of . Then the following three statements are equiva-
lent:

740 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 3, MAY 2000

i) is admissible.

ii) The derivation graph of is acyclic and is rooted at the
vertex.

iii) and each symbol in
is an entry of at least one of the strings

.

Example 2: The grammar in Example 1 has the derivation
graph

Notice that the graph is acyclic, and is rooted at the vertex la-
beled with the start symbol . Theorem 2 allows us to
conclude that the grammar is admissible.

The following theorem, which follows from Theorem 2, gives
us an algorithm for computing the data string represented by an
admissible grammar.

Theorem 3: Let be an admissible grammar. Then the data
string represented by is computed by doing the calculation

(2.3)

Example 3: Let again be the grammar in Example 1. From
Example 2, we know that is admissible. Since
, Theorem 3 tells us that the data string represented byis

, which we compute as follows:

Notice that condition iii) of Theorem 2 holds. (Each of the sym-
bols appears at least once in the strings com-
puted above; also, is a string in .) This gives us
another verification that is admissible.

The following theorem generalizes Theorem 1 and follows
easily from Theorem 2 in combination with Lemma 4 of Ap-
pendix A. It shall be useful to us in subsequent sections of the
paper.

Theorem 4: Let be an admissible context-free grammar.
Let be any string in . Then, the L-system

has a fixed point , and .
The fixed point is computable via the formula

A Useful Endomorphism:Let be an admissible grammar.
In view of Theorem 4, we may define a mapping from

into itself such that, if is any string in
, then is the fixed point of the L-system

. The following result gives us a number
of properties of the mapping that shall be needed later on.

Theorem 5: Let be an admissible grammar. Then

i) is an endomorphism on .

ii) for each .

iii) For each

iv) If is a production rule of , then

Proof of Theorem 5:Properties i) and ii) are trivially seen
to be true. Property iii) is a consequence of Theorem 4. Property
iv) follows from The fact that if is a production rule, then
the sequence is obtained by throwing away the
first term of the sequence , whence the fixed
points arising from these sequences are the same.

III. GRAMMAR TRANSFORMS

The grammar transform in Fig. 1 is the most important com-
ponent of a grammar-based code. Formally, a grammar trans-
form shall be defined as a mapping which assigns to each data
string a grammar which represents the string. This section is de-
voted to the study of grammar transforms. We shall focus on two
general classes of grammar transforms: theasympotically com-
pact grammar transforms(Section III-A) and theirreducible
grammar transforms(Section III-B).

For the rest of the paper, we let denote an arbitrary finite
set of size at least two; the setshall serve as the alphabet from
which our data strings are to be drawn. We shall call a string in

an -string. We fix a countably infinite set of symbols

(3.4)

from which we will select the variables to be used in forming the
grammars to be employed in a grammar transform. We assume
that each of the symbols in (3.4) is not a member of the alphabet

.
We define to be the set of all grammars satisfying

the following properties:

i) is admissible.

ii) .

iii) The start symbol of is .

iv) .

v) If we list the variables in in order of their first
left-to-right appearance in the string

(3.5)

then we obtain the list

KIEFFER AND YANG: GRAMMAR-BASED CODES: A NEW CLASS OF UNIVERSAL LOSSLESS SOURCE CODES 741

Discussion: For the purposes of this paper, the function of a
grammar is to represent a data string. From this point of view, it
makes no difference what symbols are used as the “names” for
the variables in . Indeed, in reconstructing a data string
from a grammar which represents it, the variables in
are “dummy” variables which are substituted for in the recon-
struction process. By means of property v), we have required
that the variables in be named in a fixed way, according to
a “canonical ordering” of the variables in . Our canonical
ordering is the unique ordering induced by the depth-first search
through the vertices of the derivation graph ofin which the
daughter vertices of a vertex are visited in order of the left-to-
right appearance of terms in the right member of a produc-
tion rule of . It is precisely this ordering that will allow the
grammar decoder (implicit in the proof of Theorem 6 in Sec-
tion IV) to determine the name of each new variable that must
be decoded (if the decoder has previously dealt with variables

then the next new variable that will appear in
the decoding process will be).

Given any grammar which is not in , but which satis-
fies properties i) and ii), one can rename the variables in
in a unique way so that properties iii)–v) will also be satis-
fied. This gives us a new grammar, denoted by, which is
a member of and which represents the same data string
as . (If a grammar is already a member of , we define

.) The grammar shall be called thecanonical form
of the grammar .

Example 4: Consider the admissible grammarwhose pro-
duction rules are

One sees that

Multiplying these strings together as in (3.5), one obtains the
string

Listing the variables in in order of their first left-to-right
appearance in this string, the following list results:

Employing this list, we rename the variables according to the
prescription

thereby obtaining the grammar in whose produc-
tion rules are

(3.6)

The grammars and both represent the data string
.

A grammar transformis a mapping from into such
that the grammar assigned to each-string repre-
sents . We adopt the notational convention of writing
to denote a grammar transform. In this notation,is a generic
variable denoting an arbitrary-string, and is the grammar
in assigned to by the grammar transform.

Definition: In subsequent sections, we shall occasionally
make use of a set of grammars which is a proper subset
of . The set consists of all grammars
satisfying the property that whenever
are distinct variables from . At this point, it is not clear to
the reader why the smaller set of grammars is needed.
This will become clear in Lemma 8 of Appendix B, where
use of a grammar to represent an -string
will allow us to set up a one-to-one correspondence between
certain entries of the right members of the production rules of

and substrings of forming the entries of a parsing of; this
correspondence will allow us to relate the encoding of the right
members of (as described in Section IV) to the left-to-right
encoding of in the usual manner of sequential encoders.

A. Asymptotically Compact Grammar Transforms

If is any context-free grammar, let denote the total
length of the right members of the production rules of. We
say that a grammar transform is asymptotically com-
pact if both of the following properties hold.

i) For each -string , the grammar belongs to .

ii)
Asymptotically compact grammar transforms are important

for the following reason: Employing an asymptotically com-
pact grammar transform as the grammar transform in Fig. 1
yields a grammar-based code which is universal (Theorem
7). We present here two examples of asymptotically compact
grammar transforms, theLempel–Ziv grammar transformand
thebisection grammar transform.

1) Lempel–Ziv Grammar Transform:Let
be an -string. Let be the Lempel–Ziv parsing

742 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 3, MAY 2000

of , by which we mean the parsing ofestablished in the paper
[15] and used in the 1978 version of the Lempel–Ziv data com-
pression algorithm [27]. Let be the set of substrings of
defined by

For each , let be the parsing of in which
, and let be a variable uniquely assigned to. Let

be the admissible grammar such that

• The set of variables and the set of terminal symbols are
given by

• The start symbol is and the production rule is

• For each other than , the production rule
is

The Lempel–Ziv grammar transformis the mapping
from into . For the Lempel–Ziv parsing

of an -string , let us write to empha-
size the dependence of the number of phrases on. It is well
known that

(3.7)

from which it follows that the Lempel–Ziv grammar transform
is asymptotically compact.

Example 5: The Lempel–Ziv parsing of the data string
is . The grammar

has the production rules

The grammar can be verified by the reader to be the
grammar in with the production rules

Discussion: The reader of [15] will find notions called pro-
ducibility and reproducibility introduced there that allow one
to describe a recursive copying process for certain parsings of
a data string (not just the parsing considered above). For each
such parsing, it is easy to construct a grammar which embodies
this copying process and represents the given data string; the
grammar we built in Example 5 was just one instance of this
paradigm.

2) Bisection Grammar Transform:Let be
an arbitrary -string. Let be the following set of sub-
strings of :

and are integers

For each , let be a variable uniquely assigned to
. For each of even length, let

be the parsing of in which the strings and are
of equal length. Let be the admissible grammar such that

• The set of variables and the set of terminal symbols are
given by

• The start symbol is .

• If and , the production rule is

• If and is a positive integer, the
production rule is

• If and is not an integer (which means
that), the production rule is

where is the unique parsing of into
strings in for which

.

Thebisection grammar transformis the mapping
from into . In the paper [13], it is shown that the bisec-
tion grammar transform is asymptotically compact, and a loss-
less compression algorithm with good redundancy properties is
developed based upon the bisection grammar transform.

Example 6: For the data string , we have

and the production rules of the grammar are

KIEFFER AND YANG: GRAMMAR-BASED CODES: A NEW CLASS OF UNIVERSAL LOSSLESS SOURCE CODES 743

We then see that the production rules of are given by

B. Irreducible Grammar Transforms

We define a context-free grammarto beirreducible if the
following four properties are satisfied:

a.1) is admissible.

a.2) If are distinct variables in , then
.

a.3) Every variable in other than the start symbol ap-
pears at least twice as an entry in the right members of
the production rules of the grammar.

a.4) There does not exist any pair of symbols in
such that the string appears more

than once in nonoverlapping positions as a substring of
the right members of the production rules for.

Example 7: The admissible grammar with production rules

(3.8)

can be verified to be an irreducible grammar.

A grammar transform is defined to be anirreducible
grammar transformif each grammar is irreducible. In prin-
ciple, it is easy to obtain irreducible grammar transforms. One
can start with any grammar transform and exploit the
presence of matching substrings in the right members of the pro-
duction rules of each to reduce to an irreducible grammar
representing in finitely many reduction steps. A wealth of dif-
ferent irreducible grammar transforms are obtained by doing the
reductions in different ways. In Section VI, we develop a sys-
tematic approach for reducing grammars to irreducible gram-
mars, and present examples of irreducible grammar transforms
which have yielded good performance in compression experi-
ments on real data.

IV. ENTROPY AND CODING OF GRAMMARS

In this section, we define the entropy of a grammar
, and present a result (Theorem 6) stating that we can

losslessly encode eachusing approximately code bits.

First, we need to define the concept ofunnormalized entropy,
which will be needed in this section and in subsequent parts of
the paper. Suppose is either a string in a multi-
plicative monoid or a parsing of a string in
a multiplicative monoid. For each , let

be the number of entries ofwhich are equal to

We define the unnormalized entropy ofto be the following
nonnegative real number :

Let be an arbitrary grammar in ; recalling the notation
we introduced in Section III, we have

We define to be the following string of length :

(4.1)

Notice that the string is simply the product of the right mem-
bers of the production rules in . We define to be the
string obtained from by removing from the first left-to-
right appearance of each variable in . We
define the entropy of the grammar to be the number

Theorem 6: There is a one-to-one mapping
such that

• If and are distinct grammars in , then the bi-
nary codeword is not a prefix of the binary code-
word .

• For each , the length of the codeword
satisfies

(4.2)

Proof: Given the grammar , the binary code-
word has a parsing in which

i) has length and indicates what is.
(Specifically, consists of zeros followed
by a one.)

ii) has length and tells what is. (For each ele-
ment of , transmit a codebit to indicate whether or not
that element is in .)

iii) has length and indicates the frequency with which
each symbol in appears in the right
members of the production rules of. (Each frequency
is given a unary representation as in i).)

iv) has length and indicates the lengths of the right
members of the production rules of.

v) has length and indicates which entries of are
variables in appearing for the first time as is
scanned from left to right .

vi) has length at most and indicates what is.
The well-known enumerative encoding technique [4] is
used to obtain from . This technique exploits the
frequencies of symbols in learned from to encode

744 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 3, MAY 2000

into a codeword of length equal to the smallest integer
greater than or equal to the logarithm of the size of the
type class of (see [6] or the beginning of Appendix
B). From the definition of and a standard bound
on the size of a type class [6, Lemma 2.3], it is clear that
the codeword length can be no more than .

From and the information conveyed by , the string
can be reconstructed, since new variables inare numbered
consecutively as they first appear. Fromand the information
conveyed by , the right members of the production rules in
can be obtained, completing the reconstruction offrom .
The total length of the strings is at most the
right side of (4.2).

Example 8: Consider the grammar with the pro-
duction rules given in (3.6). We have

Substituting , and into (4.2), we see
that the codeword is of length no more than .

V. CODING THEOREMS

We embark upon the main section of the paper. A formal def-
inition of the concept of grammar-based code is given. Specific
redundancy bounds for a grammar-based code with respect to
families of finite-state information sources (Theorems 7 and 8)
are obtained.

Information Sources:An alphabet information sourceis
defined to be any mapping such that

Finite-State Sources:Let be a positive integer. An alphabet
information source is called a th-order finite-state source

if there is a set of cardinality , a symbol , and non-
negative real numbers such
that both of the following hold:

(5.3)

(5.4)

We let denote the family of all alphabet th-order
finite-state sources. We call members of the set fi-
nite-state sources.

Remark: If in addition to (5.3) and (5.4), we require that for
each , the quantity is nonvanishing for just one
, then the finite-state sourceis said to beunifilar. We point out

that our definition of finite-state source includes sources which
are not unifilar as well as those which are unifilar.

Stationary Sources:We define to be the set of all
alphabet information sources for which

The members of are calledstationary sources.
Lossless Source Codes:We define analphabet lossless

source codeto be a pair in which

i) is a mapping (called the encoder of) which maps each
-string into a codeword , and is

the mapping (called the decoder of) which maps
back into ; and

ii) for each and each distinct pair of strings
in , the codeword is not a prefix of the

codeword .

An alphabet lossless source code is defined to be an al-
phabet grammar-based codeif there is a grammar transform

such that

The grammar transform in this definition shall be called the
grammar transform underlying the grammar-based code. We
isolate two classes of grammar-based codes. We let be
the class of all alphabet grammar-based codes for which the
underlying grammar transform is asymptotically compact. We
let denote the class of all alphabet grammar-based
codes for which the underlying grammar transform is irre-
ducible.

Redundancy Results:The type of redundancy we employ in
this paper ismaximal pointwise redundancy, a notion of redun-
dancy that has been studied previously [20], [23]. Letbe a
family of alphabet information sources. Let be an alphabet

lossless source code. Theth-order maximal pointwise re-
dundancy of with respect to the family of sources is the
number defined by

(5.5)

We present two results concerning the asymptotic behavior
of the maximal pointwise redundancy for alphabetgrammar-
based codes with respect to each family of sources (
). These are the main results of this paper.

Theorem 7: Let be a grammar-based code from the class
, and let be the grammar transform underlying

. Let be a sequence of positive numbers converging to
zero such that

Then, for every positive integer

(5.6)

where is the function defined by

KIEFFER AND YANG: GRAMMAR-BASED CODES: A NEW CLASS OF UNIVERSAL LOSSLESS SOURCE CODES 745

Theorem 8: The class of codes is a subset of the class
of codes . Furthermore, for every positive integer

Remarks:
i) Theorem 7 tells us that the maximal pointwise redun-

dancies asymptotically decay to zero for each code in
; the speed of decay is dependent upon the code.

Theorem 8 tells us that the maximal pointwise redun-
dancies decay to zero uniformly over the class of codes

, with the uniform speed of decay at least as fast
as a constant times .

ii) An alphabet lossless source code is said to be a
weakly minimax universal code[7] with respect to a
family of alphabet information sources if

Theorem 7 tells us that every code in is a weakly
minimax universal code with respect to the family of
sources . It is then automatic that the codes
in are each weakly minimax with respect to
the family of sources (easily established using
Markov approximations of stationary sources [9]).

iii) An alphabet lossless source code is said to be a
minimax universal code[7] with respect to a family of
alphabet information sources if

Theorem 7 tells us that every code in is a minimax
universal code with respect to each family of sources

, .

iv) Ziv and Lempel define anindividual sequenceto be
an infinite sequence each of whose en-
tries belongs to the alphabet. These authors [26],
[27] have put forth a notion of what it means for an al-
phabet lossless source code to be a universal code with
respect to the family of individual sequences. (Leaving
aside the technical details, we point out that Ziv and
Lempel define a class of lossless codes called finite-state
codes, and define a code to be universal if it encodes each
individual sequence asymptotically as well as each fi-
nite-state code.) It can be shown that if an alphabet
lossless source codesatisfies

for every and every individual sequence
, then is a universal code with respect to

the family of individual sequences. This fact, together
with Theorem 7, allows us to conclude that every code
in is a universal code with respect to the family
of individual sequences.

The following two lemmas, together with Theorem 6, im-
mediately imply Theorems 7 and 8. They are proved in Ap-
pendix B.

Lemma 1: Let be any -string, and let be any grammar
in which represents . Then, for every positive integer

, and every

(5.7)

Lemma 2: Let be any -string of length at least .
Then

(5.8)

for any irreducible grammar which represents.

In concluding this section, we remark that our grammar-based
encoding technique and Theorems 7 and 8 based on it are pred-
icated on the implicit assumption that a data stringis first
batch-processed before formation of a grammar representing;
only after the batch processing and grammar formation can the
grammar then be encoded. An approach involving less delay is
to form and encode production rules of a grammar on the fly
as we sequentially process the data from left to right, with the
grammar encoding terminating simultaneously with the sequen-
tial processing of the last data sample. The improved sequential
algorithm of [25] adopts this approach, necessitating a different
method for encoding grammars than used in Section IV, as well
as new proofs of the universal coding theorems.

VI. REDUCTION RULES

We present five reduction rules, such that if an admissible
grammar is not irreducible, there will be at least one of the
five reduction rules which can be applied to the grammar; any
of these rules applicable to will produce a new admissible
grammar satisfying the following properties.

i) represents the same data string that is represented by
.

ii) is closer to being irreducible than (in a sense made
clear in the discussion just prior to Section VI-A).

Reduction Rule 1:Let be an admissible grammar. Let
be a variable of that appears only once in the right members
of the production rules of . Let be the unique
production rule in which appears in the right member. Let

be the production rule of . Simultaneously do the
following to the set of production rules of:

• delete the production rule from the production
rules of ;

• replace the production rule with the production
rule .

Let be the resulting smaller set of production rules. Define
to be the unique admissible grammar whose set of production
rules is .

746 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 3, MAY 2000

Reduction Rule 2:Let be an admissible grammar. Suppose
there is a production rule

(6.9)

where . Let be a symbol which does not belong to
. Perform the following operations simultaneously

to :

• replace the rule (6.9) with the rule

• append the rule .
Let be the resulting set of production rules. Defineto be
the unique admissible grammar whose set of production rules is

.

Reduction Rule 3:Let be an admissible grammar. Suppose
there are two distinct production rules of form

(6.10)

(6.11)

where is of length at least two, either or is not the empty
string, and either or is not the empty string. Let be a
symbol not appearing in . Perform the following
operations simultaneously to .

• Replace the rule (6.10) with the rule

• Replace the rule (6.11) with the rule

• Append the rule

Let be the resulting set of production rules. Defineto be
the unique admissible grammar whose set of production rules is

.

Reduction Rule 4:Let be an admissible grammar. Suppose
there are two distinct production rules of the form

(6.12)

where is of length at least two, and either or is not the
empty string. In , replace the production rule (6.12) with
the production rule

Let be the resulting set of production rules. Defineto be
the unique admissible grammar whose set of production rules is

.

Reduction Rule 5:Let be an admissible
grammar. Suppose there exist distinct variables such
that . Let be the set of production rules
that results by substituting for each appearance of in the
right members of the production rules in. Let be the set of
those variables in which are useless symbols with respect to
the grammar . (Note that is nonempty, because

.) Let be the set of production rules obtained by

removing from all production rules whose left member is
in . Define to be the unique admissible grammar whose set
of production rules is .

Example 9: Consider the admissible grammarwhose pro-
duction rules are

Notice that . Replace every on the
right with

(6.13)

Consider the grammar in which

and is the set of production rules listed in (6.13). Let
us compute the members of which are useless symbols
with respect to the grammar .

We have

(6.14)

The useless members of are the members of
not appearing in the right-hand sides of the equations in (6.14).
These are the variablesand . Removing the two production
rules from the list (6.13) which have and as left members,
we obtain the set of production rules

that uniquely defines an admissible grammar. The reader can
verify that the grammars and both represent the data string

.

Example 10: Consider the data string

We will obtain an irreducible grammar representingin finitely
many reduction steps, where on each reduction step, one of the

KIEFFER AND YANG: GRAMMAR-BASED CODES: A NEW CLASS OF UNIVERSAL LOSSLESS SOURCE CODES 747

reduction rules 2–4 is used. We start with the list of production
rules consisting of just one rule

Applying reduction rule 2, we get the following list of produc-
tion rules:

We apply reduction rule 2 again, getting the list of production
rules

Applying reduction rule 3, we obtain

The following is then obtained via application of reduction rule
2 followed by reduction rule 4:

Applying reduction rule 3 at this point yields the list of produc-
tion rules (3.8), which is seen to define an irreducible grammar.
This grammar will automatically represent the string.

Discussion: Notice that in the preceding example, we started
with a grammar representing our data string and obtained an
irreducible grammar representing the same string via finitely
many reduction steps, in which each reduction step involved
exactly one of the reduction rules 1–5. How can we be sure that
it is always possible to do this? To answer this question, define

for any admissible grammar . The number is a posi-
tive integer for any admissible grammar. Also, the reader can
check that if the grammar is obtained from the grammarby
applying one of the reduction rules 1–5, then .
From these facts, it follows that if we start with a grammar
which is not irreducible, then in at most reduction
steps (in which each reduction step involves the application of
exactly one of the reduction rules 1–5), we will arrive at an irre-
ducible grammar representing the same data string as. It does
not matter how the reductions are done—they will always lead
to an irreducible grammar in finitely many steps.

Remark: It is possible to define more reduction rules than
reduction rules 1–5. For example, if the right members of the
production rules of a grammar contain nonoverlapping sub-
strings for which , one can reduce

by replacing with a new variable , while introducing
a new production rule (either or). This new

reduction rule is somewhat difficult to implement in practice,
however. We limited ourselves to reduction rules 1–5 because

• reduction rules 1–5 are simple to implement;
• reduction rules 1–5 yield grammars which are sufficiently

reduced so as to yield excellent data compression capa-
bility (Theorem 8).

Remark: Cook et al. [3] developed a hill-climbing search
process to infer a simple grammarwhose language con-
tains a given set of strings. The grammar inferred by their al-
gorithm locally minimizes an objective function which
measures the “goodness of fit” of the grammarto the set of
strings . It is interesting to note that reduction rules 1–4 were
proposed in [3] as part of the search process, along with some
other rules. However, unlike our approach in the present paper,
Cooket al.do a reduction step only if the objective function is
made smaller by doing so.

Using reduction rules 1–5, it is possible to design a variety
of irreducible grammar transforms. We discuss two of these,
the longest matching substring algorithmand themodified SE-
QUITUR algorithm.

A. Longest Matching Substring Algorithm

For a given data string, start with the trivial grammar con-
sisting of the single production rule , and then look for
a substring of that is as long as possible and appears in at
least two nonoverlapping positions in. (We call such a sub-
string a longest matching substring.) A first round of reduc-
tions using reduction rules 2–4 is then performed, in which
each nonoverlapping appearance of the longest matching sub-
string is replaced by a variable, resulting in a new grammar.
In subsequent rounds of reductions, one first detects a longest
matching substring (the longest-string appearing in nonover-
lapping positions in the right members of the previously con-
structed grammar), and then applies reduction rules 2–4 to ob-
tain a new grammar. The rounds of reductions terminate as soon
as a grammar is found for which no longest matching substring
can be found. This grammar is irreducible and represents.
Calling this grammar , we have defined a grammar transform

. This grammar transform is the longest matching sub-
string algorithm. Example 10 illustrates the use of the longest
matching substring algorithm. In each list of production rules
that was generated in Example 10, the right member of the last
rule listed is the longest matching substring that was used in the
round of reductions that led to that list.

B. Modified SEQUITUR Algorithm

Process the data string one data sample at a
time, from left to right. Irreducible grammars are generated re-
cursively, with the th grammar representing the firstdata
samples. Each new data sampleis appended to the right end
of the right member of the production rule of the previous
grammar , and then reductions take place to generate the
next grammar before the next sample is processed.
Since only one sample is appended at each stage of recursive
grammar formation, the reductions that need to be performed to
recursively generate the irreducible grammars are simple.

748 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 3, MAY 2000

The final grammar is an irreducible grammar which repre-
sents the entire data string. Calling this final grammar , we
have defined a grammar transform . We call this trans-
form the modified SEQUITUR algorithm because of its resem-
blance to the SEQUITUR algorithm studied in [18] and [19].

Remark: The SEQUITUR algorithm [18], [19] can generate
a grammar representing a data string which is not a
member of the set of grammars , and therefore we cannot
apply Theorem 8 to the SEQUITUR algorithm. It is an open
problem whether the SEQUITUR algorithm leads to a universal
source code. On the other hand, the modified SEQUITUR
algorithm does lead to a universal source code.

VII. CONCLUSIONS

We conclude the paper by embedding our grammar-based
coding approach into a general framework which lends perspec-
tive to the approach and allows one to more easily relate the ap-
proach to other source coding approaches.

Our general framework employs Turing machines. We adopt
the usual definition of Turing machine (see [16, pp. 26–27]),
considering all Turing machines whose output alphabet is the
set . Each Turing machine possesses a doubly infinite tape
consisting of cells

which are linked together from left to right in the indicated
order; each cell can store a symbol from or else its content
is blank. There is also a read/write head which can be positioned
over any of the cells on the machine tape. A Turing machine
executes a computation by going through finitely or infinitely
many computational cycles, possibly changing its machine state
during each cycle. A computational cycle of a Turing machine
consists of an operation of one of the following two types.

i) Read/write head is moved one cell to the left or right of
its current position, and the machine moves to a new state
or stays in the same state.

ii) Read/write head stays in its current position, and either a
symbol from or a blank is written into the cell below,
replacing the previous cell content, or the machine state
is changed (or both).

In our use of Turing machines, we differ from the standard
approach in that we do not program our Turing machines. (A
Turing machine is programmed by placing finitely many in-
puts in the cells of the machine tape before the machine goes
through its first computational cycle—the inputs can be varied
to induce the machine to produce different computations.) We
always assume that in performing a computation using a given
Turing machine, the initial configuration of the machine’s input
tape is “all cells blank” (in other words, the input to the ma-
chine is the empty string). By initializing the machine’s tape
cells to be blank, the machine is set up to do one and only one
computation. (Nothing is lost by doing this—if a string is com-
puted using a Turing machine whose initial tape configuration
has finitely many nonblank cells, it is not hard to construct an-
other Turing machine which starts with blank cells and emulates
the computations done on the first machine after finitely many
computational cycles.) When a Turing machine does a compu-

tation, either the computation goes on forever or the machine
halts after finitely many computational cycles. We say that a
Turing machine computes an-string if the ma-
chine halts with consecutive tape cells having
contents , respectively, and with every other tape
cell having blank content. The reader now sees that in our for-
mulation, given a Turing machine, either i) there exists exactly
one -string such that computes , or else the machine
computes no string in (meaning that the machine did not
halt, or else halted with cell contents not of the proper form de-
scribed previously).

General Framework:Let be any sequence
of Turing machines such that the following property holds:

computes for at least one (7.15)

Let be the lexicographical ordering of all bi-
nary strings in . (This is the sequence

etc.) Define

computes

Also, define a lossless alphabetsource code to be a-based
code if for each -string , the codeword into which is en-
coded is a such that computes .

The following coding theorem is an easy consequence of
these definitions.

Theorem 9: Let satisfy (7.15). Then

a) for any based code

b) there exists a-based code such that

(7.16)

Discussion: Let us call a -based code satisfying (7.16) an
optimal -based code. Let us call the function from

to the complexity function. Theorem 9 tells
us that there is an optimal-based code, and that its codeword
length performance is governed by thecomplexity function.

By changing , we get different families of -based codes, as
the following two examples indicate.

Example 11: Let be an effective enumera-
tion of all Turing machines, as described in [16, Sec. 1.4.1]. The

complexity function is then the Kolmogorov complexity func-
tion [16, pp. 90–91]. The family of-based codes is very wide.
To see this, let be the family of all alphabet lossless
source codes whose encoder is a one-to-one total recursive func-
tion on and whose decoder is a partial recursive function on

. Let be a code in . Using the invariance the-
orem of Kolmogorov complexity theory [16, Sec. 2.1], one can
show that there is a positive constantand a -based code
in such that

On the other hand, any optimal-based code is not a member of
, because, if it were, there would be a computable ver-

sion of the Kolmogorov complexity function, and this is known
not to be true (the paper [12] refutes rather strongly this notion).

Example 12: Let

KIEFFER AND YANG: GRAMMAR-BASED CODES: A NEW CLASS OF UNIVERSAL LOSSLESS SOURCE CODES 749

be the ordering of the grammars in such that the corre-
sponding codewords

are in lexicographical order. For each , define the
new codeword in which for that for
which . Since for every , we lose
nothing by redefining the concept of grammar-based code to use
the codewords instead of the codewords

. Accordingly, let us now define a code
to be a grammar-based code if there exists a grammar transform

for which

For each grammar in , one can construct a Turing ma-
chine with control function based on the production rules
of , which computes the data string represented by. Let

. The family of -based codes is the
family of grammar-based codes. Therefore, an optimal-based
code is an optimal grammar-based code. It can be seen that there
is an optimal grammar-based code belonging to the family of
codes introduced in Example 11. The complexity func-
tion , which describes the codeword length perfor-
mance of optimal grammar-based codes, is computable, unlike
the Kolmogorov complexity function (although we conjecture
that there is no polynomial time algorithm which computes an
optimal grammar-based code or this complexity function). Fu-
ture research could focus on obtaining bounds on the complexity
function so that we could have a better idea of how
optimal grammar-based codes perform.

We conclude the paper by remarking that the Chomsky hier-
archy of grammars [10, Ch. 9] can be mined to provide other
instances in which it might be useful to look at a family of

-based codes for a sequence of machinesassociated with a
set of grammars. To illustrate, the set of context-sensitive gram-
mars belongs to the Chomsky hierarchy. Each data string could
be represented using a context-sensitive grammar, and then a
machine could be constructed which computes the data string,
using the production rules of the grammar as part of the ma-
chine’s logic. Letting be an enumeration of these machines,
the corresponding family of -based codes (which is strictly
larger than the family of grammar-based codes of this paper),
might contain codes of practical significance that are waiting to
be discovered.

APPENDIX A
In this appendix, we prove Theorem 2 by means of a sequence

of lemmas.

Lemma 3: Let be a deterministic context-free grammar
such that the empty string is not the right member of any produc-
tion rule of . Suppose that the derivation graph ofis acyclic.
Let be a string in which is not a string in

. Then there exists a variable such that both
of the following hold:

• is an entry of ;
• is not an entry of any of the strings

Proof: We suppose that the conclusion of the lemma is
false, and prove that there must exist a cycle in the derivation
graph. Let be the set of all variables in which are entries
of . By assumption, is not empty. For each , let
be the set

is an entry of some

Notice that each variable in appearing in at least one of
the strings , must lie in the union of the sets .
Since the conclusion of the lemma was assumed to be false, for
each , there exists such that . Pick an
infinite sequence from such that

(8.17)

Since the set is finite, there must exist and positive
integers such that

(8.18)

Observe that if , then there is a path in the derivation
graph which starts at the vertex and ends at the vertex.
Applying this observation to the statements in (8.17) for which

, we see that there is a path in the derivation
graph such that the vertices visited by the path, in order, are

Relation (8.18) tells us that this path begins and ends atand
is therefore a cycle.

Lemma 4: Let be a deterministic context-free grammar for
which the empty string is not the right member of any produc-
tion rule of , and for which the derivation graph is acyclic.
Then

Proof: Fix . We assume that

(8.19)

and show that this leads to a contradiction. The assump-
tion (8.19) leads us to conclude that each string

, must have at least one entry which is a
member of . Applying the previous lemma, there exists a
sequence of variables from such
that the following hold.

i) is an entry of .

ii) For each , the variable is not an
entry of any of the strings .

There are more terms in the sequence
than there are members of . Therefore, we may find a vari-
able and integers from the set
such that . Because of statements i) and ii)
above, we see that , and therefore , is an entry of
but not an entry of . From statement i) above, we see that

, and therefore, , is an entry of . We have arrived at
the desired contradiction.

Lemma 5: Let be a deterministic context-free grammar
for which the empty string is not the right member of any
production rule of , and for which the derivation graph
is acyclic and rooted at the vertex. Then each symbol
in is an entry of at least one of the strings

.

750 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 3, MAY 2000

Proof: If and , and there is
a path in the derivation graph consisting ofedges which starts
at the vertex and ends at thevertex, then it is easy to see that

is an entry of . Fix . The
proof is complete once we show thatis an entry of for
some positive integer . Since the derivation graph is
rooted at , there is a path which starts at the

vertex and ends at the vertex. For each , let
be the variable such that the edgestarts at the

vertex of the derivation graph. Since the derivation graph is
acyclic, the terms in the sequence are distinct
members of . Therefore, it must be that . By
our observation at the beginning of the proof, we also have that

is an entry of . The proof is complete.

Lemma 6: Let be an admissible context-free grammar.
Then the derivation graph of is rooted at the vertex.

Proof: The proof is by induction. Let be a symbol
in . We must show that there is a path in the deriva-
tion graph of which starts at the vertex of the graph and
terminates at the vertex of the graph. Since is not a useless
symbol, we can find a sequence of strings such
that

• is the right member of the production rule whose left
member is ;

• if , then ;
• is an entry of .

Suppose . In the derivation tree, there is a path consisting
of one edge which starts at thevertex and terminates at the
vertex. Suppose . We may take as our induction hypothesis
the property that for every symbol in , there is a path in the
derivation graph leading from thevertex to the vertex labeled
by that symbol. Pick an entry from such that

arises when the right member of theproduction rule is
substituted for in . To a path leading from the vertex
to the vertex, we may then append an edge leading from the

vertex to the vertex, thereby obtaining a path leading from
the vertex to the vertex.

Lemma 7: Let be an admissible context-free grammar.
Then the derivation graph of is acyclic.

Proof: Since is not empty, for some , the string
is a member of and therefore a member of ,

which implies that the following property holds.
Property: All but finitely many terms of the sequence

coincide with a string in .
Suppose are variables in and there is a path in

the derivation graph leading from thevertex to the vertex.
Since is not a useless symbol,is an entry of for some
. Using the path from the vertex to the vertex, one then sees

that is an entry of for some . This implies that if
there were a cycle in the derivation graph, some (the
variable labeling the vertex at the beginning and the end of the
cycle) would be an entry of for infinitely many . This
being a contradiction of the Property, the derivation graph must
be acyclic.

Proof of Theorem 2:Statement i) of Theorem 2 implies
statement ii) of Theorem 2 by Lemmas 6 and 7. Statement ii)

of Theorem 2 implies statement iii) of Theorem 2 by Lemmas 4
and 5. It is evident that statement iii) implies statement i).

APPENDIX B

In this appendix, we prove Lemmas 1 and 2. We adopt a nota-
tion that will be helpful in these proofs: If and are strings in
the same multiplicative monoid , we shall write to de-
note that can be obtained by permuting the entries of the string

. (In the language of [6], means that and belong to
the sametype class.) We first need to establish the following
lemma that is an aid in proving Lemmas 1 and 2.

Lemma 8: Given any grammar , there exists a
parsing of the -string represented by satisfying

(9.20)

Furthermore, is related to in the following way: There is a
string in such that and

(9.21)

Proof: Fix . Let be the -string represented
by . Find any string for which there are strings ,

, satisfying

i) and .
ii) For each , the string is obtained

from the string by replacing exactly one appearance
of in with . (By this, we mean that there
exist strings such that is a parsing of

and is a parsing of .)
Letting be the length of the string, write ,
where . Let be the sequence of
substrings of defined by (9.21). Studying the construction in
i) and ii), it can be seen that . We complete the proof by
showing that is a parsing of satisfying (9.20). From (9.21)
and the fact that is an endomorphism, is a parsing of

. Therefore, will be a parsing of provided we can
show that

(9.22)

From statement ii) above, for each

From conclusion iv) of Theorem 5, the two middle factors in the
right members of the preceding equations are equal, from which
we conclude that the left members are equal, and then (9.22)
must hold. Using again the fact that , the unnormalized
entropies of these two strings must coincide, when

and (9.20) will be true provided we can show that

(9.23)

Let be the string obtained from by striking out all en-
tries of which belong to . Let be the string obtained
from by striking out all entries of which belong to .
For , let be the subsequence of obtained by
applying to the entries of . If is the empty string
or if is the empty string, then the mapping provides

KIEFFER AND YANG: GRAMMAR-BASED CODES: A NEW CLASS OF UNIVERSAL LOSSLESS SOURCE CODES 751

even
and odd
and odd

empty string,

a one-to-one correspondence between the entries ofand ,
forcing and the conclusion that (9.23) is true.
So, we may assume that neither of the sequences is
the empty string. Properties of unnormalized entropy give us

(9.24)

We also have

(9.25)

Combining (9.24) with (9.25), and using the fact that ,
we obtain (9.23), completing the proof of Lemma 8.

A. Proof of Lemma 1

Fix a positive integer . Choose an arbitrary -string , an
arbitrary grammar which represents, and an ar-
bitrary alphabet th-order finite-state source. We wish to
establish the inequality (5.7). Letbe the length of , and we
write out as , where each . Appealing
to the definition of the family of information sources ,
we select a set of cardinality , , and nonnegative real
numbers such that (5.3) and
(5.4) hold. We introduce the function in which

for every -string . We note for later use that
for every -string and every parsing of ,
the following relation holds:

(9.26)

There exists a probability distribution on such that for
every positive integer and every

(9.27)

where it can be determined that is a positive con-
stant that must satisfy . Applying Lemma
8, let be a parsing of with

such that (9.20) holds. We have

(9.28)

where the minimum is over all probability distributionson
. From (9.26) and (9.27)

(9.29)

Combining (9.20), (9.28), and (9.29), we have

(9.30)

We can appeal to the concavity of the logarithm function to ob-
tain

(9.31)

Combining (9.30) and (9.31), along with the fact that
, we see that (5.7) holds.

B. Proof of Lemma 2

The following lemma, used in the proof of Lemma 2, is easily
proved by mathematical induction.

Lemma 9: Let be a real number satisfying . The
following statement holds for every integer :

(9.32)

We begin our proof of Lemma 2 by fixing an-string of
length at least . Let be any irreducible grammar which
represents . We have ,
where is the start symbol of . For each ,
we can express

where each . For each ,
let (see the top of this page). Define the three strings

The strings and are not the empty string because
for at least one. Define to be the positive

integer

We derive the following relationships which shall be useful to
us in the proof of Lemma 2:

(9.33)

(9.34)

(9.35)

From the fact that (deducible from Lemma 8),
and the fact that

we deduce that

752 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 3, MAY 2000

and, therefore,

(9.36)

Since is irreducible, each of the variables
appears at least once in , and therefore we must

have

(9.37)

From (9.36) and (9.37), we conclude that (9.33) is true.
Now we prove the relation (9.34). Since is irreducible, if

for a variable , then , where

(9.38)

Using (9.38), we obtain

(9.39)

Noting the expression at the bottom of this page, we see that
(9.34) follows from (9.39).

We now turn our attention to the proof of (9.35). By construc-
tion of the string and (9.38), there are stringsand such
that

i) ;

ii) and ;

iii) if is not the empty string, there is a one-to-one corre-
spondence between the entries ofand certain entries
of such that if is an entry of and is the cor-
responding entry of , then .

If we apply the endomorphism to i), we see that

(9.40)

Because of iii)

(9.41)

Applying the relations (9.40) and (9.41) together with the fact
from ii) that , we conclude

(9.42)

from which (9.35) follows.
Having demonstrated the relations (9.33)–(9.35), we can now

finish the proof of Lemma 2. Factor as

where each . Because is irreducible, the
strings are distinct. We express each as

where . Let be arbitrary. We need
to upper-bound the cardinality of the set

To this end, let be the mapping from the set into the set

in which is mapped into

where for each

otherwise.

Since the mapping is one-to-one, we must have

We conclude that

(9.43)
Define and to be the sequences of
integers

Define and to be the sequences of
positive integers

Notice that

This fact implies, via (9.35), that

and so we may define an integer as follows:

KIEFFER AND YANG: GRAMMAR-BASED CODES: A NEW CLASS OF UNIVERSAL LOSSLESS SOURCE CODES 753

We establish a lower bound on . Notice that

from which it follows that

On the other hand,

and so

from which we conclude that

(9.44)

We examine the right side of (9.44) in more detail. It is a simple
exercise in calculus to show that

(9.45)

Notice that

and, therefore,

Combining this fact with (9.45), we see that

(9.46)
From the fact that

it follows that

and, therefore,

(9.47)

Applying (9.47) to (9.44), we conclude that

(9.48)

From the definition of , we have

where . From this we argue

The preceding allows us to conclude that

(9.49)

Since (see (9.43)), we may replace with in the
first term on the right in (9.49) to obtain the bounds

(9.50)

where in the preceding we also used Lemma 9. Applying to
(9.50) the lower bound on that was established in (9.48),
we obtain

(9.51)

From the relationships (9.33)–(9.35), one can see that

(9.52)

Combining (9.51) and (9.52), we obtain (5.8), the desired con-
clusion of Lemma 2.

ACKNOWLEDGMENT

The authors wish to thank W. Evans, R. Maier, A. Mantilla,
G. Nelson, M. Weinberger, and S. Yakowitz for helpful com-
ments concerning this work. Special thanks are due to Prof. M.
Marcellin of the University of Arizona, Department of Electrical
and Computer Engineering, Prof. H. Flaschka of the University
of Arizona, Department of Mathematics, and Prof. J. Massey
of the Swiss Federal Institute of Technology, Zürich, Switzer-
land for arranging for financial support during the first author’s
1996–1997 sabbatical that helped to make the completion of this
work possible.

REFERENCES

[1] A. Aho, R. Sethi, and J. Ullman,Compilers: Principles, Techniques, and
Tools. Reading, MA: Addison-Wesley, 1986.

[2] R. Cameron, “Source encoding using syntactic information source
models,”IEEE Trans. Inform. Theory, vol. 34, pp. 843–850, July 1988.

[3] C. Cook, A. Rosenfeld, and A. Aronson, “Grammatical inference by hill
climbing,” Inform. Sci., vol. 10, pp. 59–80, 1976.

754 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 3, MAY 2000

[4] T. Cover, “Enumerative source encoding,”IEEE Trans. Inform. Theory,
vol. IT-19, pp. 73–77, Jan. 1973.

[5] T. Cover and J. Thomas,Elements of Information Theory. New York:
Wiley, 1991.

[6] I. Csiszár and J. Körner,Information Theory: Coding Theorems for Dis-
crete Memoryless Systems. New York: Academic, 1981.

[7] L. Davisson, “Universal noiseless coding,”IEEE Trans. Inform. Theory,
vol. IT-19, pp. 783–795, Nov. 1973.

[8] J. Deller, J. Proakis, and J. Hansen,Discrete-Time Processing of Speech
Signals. Englewood Cliffs, NJ: Macmillan, 1993.

[9] C. Hobby and N. Ylvisaker, “Some structure theorems for stationary
probability measures on finite state sequences,”Ann. Math. Statist., vol.
35, pp. 550–556, 1964.

[10] J. Hopcroft and J. Ullman,Introduction to Automata Theory, Languages,
and Computation. Reading, MA: Addison-Wesley, 1979.

[11] E. Kawaguchi and T. Endo, “On a method of binary-picture representa-
tion and its application to data compression,”IEEE Trans. Pattern Anal.
Machine Intell., vol. PAMI-2, pp. 27–35, 1980.

[12] J. C. Kieffer and E.-H. Yang, “Sequential codes, lossless compression
of individual sequences, and Kolmogorov complexity,”IEEE Trans. In-
form. Theory, vol. 42, pp. 29–39, Jan. 1996.

[13] J. Kieffer, E.-H. Yang, G. Nelson, and P. Cosman, “Universal lossless
compression via multilevel pattern matching,”IEEE Trans. Inform.
Theory, to be published.

[14] E. Kourapova and B. Ryabko, “Application of formal grammars for en-
coding information sources,”Probl. Inform. Transm., vol. 31, pp. 23–26,
1995.

[15] A. Lempel and J. Ziv, “On the complexity of finite sequences,”IEEE
Trans. Inform. Theory, vol. IT-22, pp. 75–81, Jan. 1976.

[16] M. Li and P. Vitányi,An Introduction to Kolmogorov Complexity and its
Applications. New York: Springer-Verlag, 1993.

[17] A. Lindenmayer, “Mathematical models for cellular interaction in de-
velopment,”J. Theor. Biol., vol. 18, pp. 280–315, 1968.

[18] C. Nevill-Manning and I. Witten, “Identifying hierarchical structure in
sequences: A linear-time algorithm,”J. Artificial Intell. Res., vol. 7, pp.
67–82, 1997.

[19] , “Compression and explanation using hierarchical grammars,”
Comput. J., vol. 40, pp. 103–116, 1997.

[20] E. Plotnik, M. Weinberger, and J. Ziv, “Upper bounds on the probability
of sequences emitted by finite-state sources and on the redundancy of
the Lempel–Ziv algorithm,”IEEE Trans. Inform. Theory, vol. 38, pp.
66–72, Jan. 1992.

[21] G. Rozenberg and A. Salomaa,The Mathematical Theory of L Sys-
tems. New York: Academic, 1980.

[22] R. Schalkoff,Digital Image Processing and Computer Vision. New
York: Wiley, 1989.

[23] Y. Shtarkov, “Fuzzy estimation of unknown source model for universal
coding,” inProc. 1998 IEEE Information Theory Workshop, Killarney,
Ireland, June 22–26, 1998, pp. 17–18.

[24] J. Storer and T. Szymanski, “Data compression via textual substitution,”
J. Assoc. Comput. Mach., vol. 29, pp. 928–951, 1982.

[25] E.-h. Yang and J. Kieffer, “Efficient universal lossless data compres-
sion algorithms based on a greedy sequential grammar transform—Part
I: Without context models,”IEEE Trans. Inform. Theory, vol. 46, pp.
755–777, May 2000.

[26] J. Ziv, “Coding theorems for individual sequences,”IEEE Trans. Inform.
Theory, vol. IT-24, pp. 405–412, July 1978.

[27] J. Ziv and A. Lempel, “Compression of individual sequences via vari-
able-rate coding,”IEEE Trans. Inform. Theory, vol. IT-24, pp. 530–536,
Sept. 1978.

